Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dagmar Procházková is active.

Publication


Featured researches published by Dagmar Procházková.


PLOS ONE | 2012

The Physiology and Proteomics of Drought Tolerance in Maize: Early Stomatal Closure as a Cause of Lower Tolerance to Short-Term Dehydration?

Monika Benešová; D. Holá; Lukáš Fischer; Petr L. Jedelský; František Hnilička; Naďa Wilhelmová; Olga Rothová; Marie Kočová; Dagmar Procházková; Jana Honnerová; Lenka Fridrichová; H. Hniličková

Understanding the response of a crop to drought is the first step in the breeding of tolerant genotypes. In our study, two maize (Zea mays L.) genotypes with contrasting sensitivity to dehydration were subjected to moderate drought conditions. The subsequent analysis of their physiological parameters revealed a decreased stomatal conductance accompanied by a slighter decrease in the relative water content in the sensitive genotype. In contrast, the tolerant genotype maintained open stomata and active photosynthesis, even under dehydration conditions. Drought-induced changes in the leaf proteome were analyzed by two independent approaches, 2D gel electrophoresis and iTRAQ analysis, which provided compatible but only partially overlapping results. Drought caused the up-regulation of protective and stress-related proteins (mainly chaperones and dehydrins) in both genotypes. The differences in the levels of various detoxification proteins corresponded well with the observed changes in the activities of antioxidant enzymes. The number and levels of up-regulated protective proteins were generally lower in the sensitive genotype, implying a reduced level of proteosynthesis, which was also indicated by specific changes in the components of the translation machinery. Based on these results, we propose that the hypersensitive early stomatal closure in the sensitive genotype leads to the inhibition of photosynthesis and, subsequently, to a less efficient synthesis of the protective/detoxification proteins that are associated with drought tolerance.


Biologia Plantarum | 2007

Leaf senescence and activities of the antioxidant enzymes

Dagmar Procházková; N. Wilhelmová

Senescence is a genetically regulated process that involves decomposition of cellular structures and distribution of the products of this degradation to other plant parts. Reactions involving reactive oxygen species are the intrinsic features of these processes and their role in senescence is suggested. The malfunction of protection against destruction induced by reactive oxygen species could be the starting point of senescence. This article reviews biochemical changes during senescence in relation to reactive oxygen species and changes in antioxidant protection.


Biologia Plantarum | 2004

Changes in antioxidative protection in bean cotyledons during natural and continuous irradiation-accelerated senescence

Dagmar Procházková; N. Wilhelmová

We employed continuous irradiation (CL) for induction of premature senescence caused by enhanced production of reactive oxygen species. As a model plant we used bean (Phaseolus vulgaris L. cv. Jantar) cotyledons because they have well defined and a quite short life span. Senescence of bean cotyledons induced by CL progressed more rapidly than natural senescence: the life span of CL cotyledons was 13 d compared to 16 d in controls (C). Chl content was significantly lower in 10- and 13-d-old CL plants than in C plants and the change with age was not statistically significant. Activities of all antioxidative enzymes declined either with senescence onset or during whole life span. Activity of antioxidative enzymes, except ascorbate peroxidase, was lower in CL plants compared to C plants. On the contrary, contents of non-enzymatic antioxidants β-carotene and ascorbate were higher in CL plants than in C plants. No significant difference, except in the youngest cotyledons, was observed in glutathione content.


Nitric Oxide | 2011

Nitric oxide, reactive nitrogen species and associated enzymes during plant senescence

Dagmar Procházková; Nad’a Wilhelmová

Leaf senescence is often associated with increased oxidative damage to cellular macromolecules by reactive oxygen species. However, very little is known about other radicals: gaseous free radical nitric oxide and related molecules--reactive nitrogen species. This review brings a short survey of the questions.


BMC Plant Biology | 2015

Tomato (Solanum lycopersicum L.) SlIPT3 and SlIPT4 isopentenyltransferases mediate salt stress response in tomato

Eva Žižková; Petre I. Dobrev; Yordan Muhovski; Petr Hošek; Klára Hoyerová; D. Haisel; Dagmar Procházková; Stanley Lutts; Václav Motyka; Imène Hichri

BackgroundCytokinins (CKs) are involved in response to various environmental cues, including salinity. It has been previously reported that enhancing CK contents improved salt stress tolerance in tomato. However, the underlying mechanisms of CK metabolism and signaling under salt stress conditions remain to be deciphered.ResultsTwo tomato isopentenyltransferases, SlIPT3 and SlIPT4, were characterized in tomato and Arabidopsis. Both proteins displayed isopentenyltransferase (IPT) activity in vitro, while their encoding genes exhibited different spatio-temporal expression patterns during tomato plant development. SlIPT3 and SlIPT4 were affected by the endogenous CK status, tightly connected with CKs feedback regulation, as revealed by hormonal treatements. In response to salt stress, SlIPT3 and SlIPT4 were strongly repressed in tomato roots, and differently affected in young and old leaves. SlIPT3 overexpression in tomato resulted in high accumulation of different CK metabolites, following modifications of CK biosynthesis-, signaling- and degradation-gene expression. In addition, 35S::SlIPT3 tomato plants displayed improved tolerance to salinity consecutive to photosynthetic pigments and K+/Na+ ratio retention. Involvement of SlIPT3 and SlIPT4 in salt stress response was also observed in Arabidopsis ipt3 knock-out complemented plants, through maintenance of CK homeostasis.ConclusionsSlIPT3 and SlIPT4 are functional IPTs encoded by differently expressed genes, distinctively taking part in the salinity response. The substantial participation of SlIPT3 in CK metabolism during salt stress has been determined in 35S::SlIPT3 tomato transformants, where enhancement of CKs accumulation significantly improved plant tolerance to salinity, underlining the importance of this phytohormone in stress response.


Ecotoxicology and Environmental Safety | 2014

The long-term effect of zinc soil contamination on selected free amino acids playing an important role in plant adaptation to stress and senescence

D. Pavlíková; Veronika Zemanová; Dagmar Procházková; Milan Pavlík; Jiřina Száková; Naďa Wilhelmová

Increased endogenous plant cytokinin (CK) content through transformation with an isopentyl transferase (ipt) gene has been associated with improved plant stress tolerance. The objective of this study is to determine amino acid changes associated with elevated CK production in ipt transgenic tobacco (Nicotiana tabacum L., cv. Wisconsin 38). Nontransformed (WT) and transformed tobacco plants with ipt gene controlled by senescence-activated promoter (SAG) were exposed to zinc soil contamination (tested levels Zn1=250, Zn2=500, Zn3=750 mg kg(-1) soil). The Zn effect on plant stress metabolism resulted in changes in levels of selected free amino acids playing an important role in adaptation to stress and plant senescence (alanine, leucine, proline, methionine and γ-aminobutyrate) and differed for transformed and nontransformed tobacco plants. Analyses of amino acids confirmed that SAG tobacco plants had improved zinc tolerance compared with the WT plants. The enhanced Zn tolerance of SAG plants was associated with the maintenance of accumulation of proline, methionine and γ-aminobutyrate. The concentrations of leucine and alanine did not show significant differences between plant lines.


Photosynthetica | 2005

Photosynthesis in leaves of Nicotiana tabacum L. infected with tobacco mosaic virus

N. Wilhelmová; Dagmar Procházková; M. Sindelarova; L. Sindelar

In tobacco leaves inoculated with tobacco mosaic virus (TMV), changes in chlorophyll (Chl) and carotenoid contents, parameters of slow Chl fluorescence kinetics, i.e. the maximum quantum yield of photosystem (PS2) photochemistry Fv/Fm, the effective quantum yield of photochemical energy conversion in PS2 Φ2, ratio of quantum yields of photochemical and concurrent non-photochemical processes in PS2 Fv/F0, non-photochemical quenching (NPQ), and photochemical activities of isolated chloroplasts from systemically infected tobacco leaves were investigated. We compared two successive stages of infection, the first in the stage of vein clearing at 9th day post inoculation (dpi) and the second at 22nd dpi when two different regions, i.e. light- (LGI) or dark-green (DGI) islands in the infected leaf were apparent and symptoms were fully developed. These two different regions were measured separately. The Chl and carotenoid contents in infected leaves decreased with a progression of infection and were lowest in LGI in the second stage. Also the ratio of Chl a/b declined in similar manner. The maximum quantum yield of PS2 photochemistry Fv/Fm, was decreased in the following order: first stage, DGI, and LGI. The same is true for the ratio Fv/F0. The decrease of Φ2 in infected leaves declined as compared to their controls. On the contrary, NPQ increased in infected leaves, the highest value was found in the first infection stage. Photochemical activities of the whole electron transport chain in isolated chloroplasts dramatically declined with the progression of symptoms, the lowest value was in LGI. Similarly, but to a lesser extent, the activity of PS2 in isolated chloroplasts decreased in infected leaves. Generally, the most marked impairment of the photosynthetic apparatus was manifested in the LGI of infected leaves.


Cell Biochemistry and Function | 2008

Antioxidant protection during ageing and senescence in chloroplasts of tobacco with modulated life span.

Dagmar Procházková; D. Haisel; Nad’a Wilhelmová

We studied changes in antioxidant protection during ageing and senescence in chloroplasts of tobacco (Nicotiana tabacum L., cv. Wisconsin) with introduced SAG12 promoter fused with ipt gene for cytokinin synthesis (transgenic plants with increased levels of cytokinins, SAG) or without it (control). Old leaves of SAG plants as well as their chloroplasts maintained higher physiological parameters compared to controls; accordingly, we concluded that their ageing was diverted due to increased cytokinin content. The chloroplast antioxidant protection did not decrease as well. Although antioxidant protection usually decreased in whole leaves of senescing control plants, ascorbate peroxidase (APX) and dehydroascorbate reductase (DHAR) activity, which maintained the high redox state of ascorbate, increased in chloroplasts of old control leaves. Copyright


Journal of Plant Physiology | 2014

Nitrogen metabolism and gas exchange parameters associated with zinc stress in tobacco expressing an ipt gene for cytokinin synthesis

D. Pavlíková; Milan Pavlík; Dagmar Procházková; Veronika Zemanová; František Hnilička; Naďa Wilhelmová

Increased endogenous plant cytokinin (CK) content through transformation with an isopentyl transferase (ipt) gene has been associated with improved plant stress tolerance. The impact of zinc (tested levels Zn1=250, Zn2=500, Zn3=750mgkg(-1)soil) on gas exchange parameters (net photosynthetic rate, transpiration rate, stomatal conductance, intercellular CO2 concentration) and nitrogen utilization by plants resulted in changes of free amino acid concentrations (glutamic acid, glutamine, asparagine, aspartate, glycine, serine, cystein) and differed for transformed and non-transformed tobacco plants. For pot experiments, tobacco plants (Nicotiana tabacum L., cv. Wisconsin 38) transformed with a construct consisting of SAG12 promoter fused with the ipt gene for cytokinin synthesis (SAG plants) and its wild type (WT plants as a control) were used. Physiological analyses confirmed that SAG plants had improved zinc tolerance compared with the WT plants. The enhanced Zn tolerance of SAG plants was associated with the maintenance of accumulation of amino acids and with lower declines of photosynthetic and transpiration rates. In comparison to WT plants, SAG plants exposed to the highest Zn concentration accumulated lower concentrations of asparagine, which is a major metabolic product during senescence.


Photosynthetica | 2013

Effects of exogenous nitric oxide on photosynthesis

Dagmar Procházková; D. Haisel; N. Wilhelmová; D. Pavlíková; Jiřina Száková

Nitric oxide (NO) is an important signalling molecule with diverse physiological functions in plants. In plant cell, it is synthesised in several metabolic ways either enzymatically or nonenzymatically. Due to its high reactivity, it could be also cytotoxic in dependence on concentration. Such effects could be also mediated by NO-derived compounds. However, the role of NO in photosynthetic apparatus arrangement and in photosynthetic performance is poorly understood as indicated by a number of studies in this field with often conflicting results. This review brings a short survey of the role of exogenous NO in photosynthesis under physiological and stressful conditions, particularly of its effect on parameters of chlorophyll fluorescence.

Collaboration


Dive into the Dagmar Procházková's collaboration.

Top Co-Authors

Avatar

D. Haisel

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

N. Wilhelmová

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

D. Pavlíková

Czech University of Life Sciences Prague

View shared research outputs
Top Co-Authors

Avatar

Nad’a Wilhelmová

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Jiřina Száková

Czech University of Life Sciences Prague

View shared research outputs
Top Co-Authors

Avatar

Naďa Wilhelmová

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

František Hnilička

Czech University of Life Sciences Prague

View shared research outputs
Top Co-Authors

Avatar

D. Holá

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Marie Kočová

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Milan Pavlík

Academy of Sciences of the Czech Republic

View shared research outputs
Researchain Logo
Decentralizing Knowledge