Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where D. R. Ardila is active.

Publication


Featured researches published by D. R. Ardila.


The Astrophysical Journal | 2005

The Morphology-Density Relation in z ~ 1 Clusters

Marc Postman; Marijn Franx; N. J. G. Cross; B. Holden; Holland C. Ford; G. D. Illingworth; Tomotsugu Goto; R. Demarco; P. Rosati; John P. Blakeslee; K.-V. Tran; N. Benítez; M. Clampin; George F. Hartig; N. Homeier; D. R. Ardila; Frank Bartko; R. J. Bouwens; L. Bradley; T. J. Broadhurst; Robert A. Brown; Christopher J. Burrows; E. S. Cheng; Paul D. Feldman; David A. Golimowski; Caryl Gronwall; L. Infante; Randy A. Kimble; John E. Krist; Michael P. Lesser

We measure the morphology-density relation (MDR) and morphology-radius relation (MRR) for galaxies in seven z ~ 1 clusters that have been observed with the Advanced Camera for Surveys (ACS) on board the Hubble Space Telescope. Simulations and independent comparisons of our visually derived morphologies indicate that ACS allows one to distinguish between E, S0, and spiral morphologies down to z850 = 24, corresponding to L/L* = 0.21 and 0.30 at z = 0.83 and 1.24, respectively. We adopt density and radius estimation methods that match those used at lower redshift in order to study the evolution of the MDR and MRR. We detect a change in the MDR between 0.8 < z < 1.2 and that observed at z ~ 0, consistent with recent work; specifically, the growth in the bulge-dominated galaxy fraction, fE+S0, with increasing density proceeds less rapidly at z ~ 1 than it does at z ~ 0. At z ~ 1 and Σ ≥ 500 galaxies Mpc-2, we find fE+S0 = 0.72 ± 0.10. At z ~ 0, an E+S0 population fraction of this magnitude occurs at densities about 5 times smaller. The evolution in the MDR is confined to densities Σ 40 galaxies Mpc-2 and appears to be primarily due to a deficit of S0 galaxies and an excess of Sp+Irr galaxies relative to the local galaxy population. The fE-density relation exhibits no significant evolution between z = 1 and 0. We find mild evidence to suggest that the MDR is dependent on the bolometric X-ray luminosity of the intracluster medium. Implications for the evolution of the disk galaxy population in dense regions are discussed in the context of these observations.


Astrophysical Journal Supplement Series | 2004

FAINT GALAXIES IN DEEP ADVANCED CAMERA FOR SURVEYS OBSERVATIONS

N. Benítez; Holland C. Ford; R. J. Bouwens; Felipe Menanteau; John P. Blakeslee; Caryl Gronwall; G. D. Illingworth; Gerhardt R. Meurer; T. J. Broadhurst; Mark C. Clampin; Marijn Franx; George F. Hartig; D. Magee; Marco Sirianni; D. R. Ardila; Frank Bartko; Robert A. Brown; Christopher J. Burrows; E. S. Cheng; N. J. G. Cross; Paul D. Feldman; David A. Golimowski; L. Infante; Randy A. Kimble; John E. Krist; Michael P. Lesser; Z. Levay; Andre R. Martel; G. K. Miley; Marc Postman

We present the analysis of the faint galaxy population in the Advanced Camera for Surveys (ACS) Early Release Observation fields VV 29 (UGC 10214) and NGC 4676. Here we attempt to thoroughly consider all aspects relevant for faint galaxy counting and photometry, developing methods which are based on public software and that are easily reproducible by other astronomers. Using simulations we determine the best SExtractor parameters for the detection of faint galaxies in deep HST observations, paying special attention to the issue of deblending, which significantly affects the normalization and shape of the number count distribution. We confirm, as claimed by Bernstein, Freedman and Madore (2002), that Kron-like magnitudes, such as the ones generated by SExtractor, can miss more than half of the light of faint galaxies, what dramatically affects the slope of the number counts. We present catalogs for the VV 29 and NGC 4676 fields with photometry in the g,V and I bands. We also show that combining the bayesian software BPZ with superb ACS data and new spectral templates enables us to estimate reliable photometric redshifts for a significant fraction of galaxies with as few as three filters. After correcting for selection effects, we measure slopes of 0.32+- 0.01 for 22 25.5 can be well approximated in all our filters by a passive luminosity evolution model based on the COMBO-17 luminosity function (\alpha=-1.5), with a strong merging rate following the prescription of Glazebrook et al. (1994), \phi^*\propto (1+Qz), with Q=4.We present the analysis of the faint galaxy population in the Advanced Camera for Surveys (ACS) Early Release Observation fields VV 29 (UGC 10214) and NGC 4676. These observations cover a total area of 26.3 arcmin 2 and have depths close to that of the Hubble Deep Fields in the deepest part of the VV 29 image, with 10 � detection limits for point sources of 27.8, 27.6, and 27.2 AB magnitudes in the g F475W , VF606W ,a ndIF814W bands, respectively. Measuring the faint galaxy number count distribution is a difficult task, with different groups arriving at widely varying results even on the same data set. Here we attempt to thoroughly consider all aspects relevant for faint galaxy counting and photometry, developing methods that are based on public software and that are easily reproducible by other astronomers. Using simulations we determine the best SExtractor parameters for the detection of faint galaxies in deep Hubble Space Telescope observations, paying special attention to the issue of deblending, which significantly affects the normalization and shape of the number count distribution. We confirm, as claimed by Bernstein, Freedman, & Madore, that Kron-like magnitudes, such as the ones generated by SExtractor, can miss more than half of the light offaint galaxies, what dramatically affects the slope of the number counts. We show how to correct for this effect, which depends sensitively not only on the characteristics of the observations, but also on the choice of SExtractor parameters. We present catalogs for the VV 29 and NGC 4676 fields with photometry in the F475W, F606W, and F814W bands. We also show that combining the Bayesian software BPZ with superb ACS data and new spectral templates enables us to estimate reliable photometric redshifts for a significant fraction of galaxies with as few as three filters. After correcting for selection effects, we measure slopes of 0:32 � 0:01for 22 25:5 can be well approximated in all our filters by a passive luminosity evolution model based on the COMBO-17 luminosity function (� ¼� 1:5), with a strong merging rate following the prescription of


The Astrophysical Journal | 2011

YSOVAR: THE FIRST SENSITIVE, WIDE-AREA, MID-INFRARED PHOTOMETRIC MONITORING OF THE ORION NEBULA CLUSTER

M. Morales-Calderon; John R. Stauffer; Lynne A. Hillenbrand; Robert Allen Gutermuth; Inseok Song; Luisa Marie Rebull; Peter Plavchan; John M. Carpenter; Barbara A. Whitney; Kevin R. Covey; C. Alves de Oliveira; E. M. Winston; Mark J. McCaughrean; J. Bouvier; S. Guieu; Frederick J. Vrba; J. Holtzman; Franck Marchis; Joseph L. Hora; L. H. Wasserman; Susan Terebey; Thomas S. Megeath; E. F. Guinan; Jan Forbrich; N. Huélamo; Pablo Riviere-Marichalar; D. Barrado; Karl R. Stapelfeldt; Jesús Hernández; Lori E. Allen

We present initial results from time-series imaging at infrared wavelengths of 0.9 deg^2 in the Orion Nebula Cluster (ONC). During Fall 2009 we obtained 81 epochs of Spitzer 3.6 and 4.5 μm data over 40 consecutive days. We extracted light curves with ~3% photometric accuracy for ~2000 ONC members ranging from several solar masses down to well below the hydrogen-burning mass limit. For many of the stars, we also have time-series photometry obtained at optical (I_c) and/or near-infrared (JK_s ) wavelengths. Our data set can be mined to determine stellar rotation periods, identify new pre-main-sequence eclipsing binaries, search for new substellar Orion members, and help better determine the frequency of circumstellar disks as a function of stellar mass in the ONC. Our primary focus is the unique ability of 3.6 and 4.5 μm variability information to improve our understanding of inner disk processes and structure in the Class I and II young stellar objects (YSOs). In this paper, we provide a brief overview of the YSOVAR Orion data obtained in Fall 2009 and highlight our light curves for AA-Tau analogs—YSOs with narrow dips in flux, most probably due to disk density structures passing through our line of sight. Detailed follow-up observations are needed in order to better quantify the nature of the obscuring bodies and what this implies for the structure of the inner disks of YSOs.


Astronomy and Astrophysics | 2013

DUst around NEarby Stars. The survey observational results

C. Eiroa; A. Mora; B. Montesinos; Olivier Absil; J.-Ch. Augereau; A. Bayo; G. Bryden; W. C. Danchi; C. del Burgo; S. Ertel; M. Fridlund; A. M. Heras; Alexander V. Krivov; R. Launhardt; R. Liseau; T. Löhne; J. Maldonado; G. L. Pilbratt; Aki Roberge; J. Rodmann; J. Sanz-Forcada; E. Solano; Karl R. Stapelfeldt; Philippe Thebault; Sebastian Wolf; D. R. Ardila; Maria Jesus Arevalo; C. Beichmann; V. Faramaz; B. M. González-García

Context. Debris discs are a consequence of the planet formation process and constitute the fingerprints of planetesimal systems. Their solar system counterparts are the asteroid and Edgeworth-Kuiper belts. Aims. The DUNES survey aims at detecting extra-solar analogues to the Edgeworth-Kuiper belt around solar-type stars, putting in this way the solar system into context. The survey allows us to address some questions related to the prevalence and properties of planetesimal systems. Methods. We used Herschel/PACS to observe a sample of nearby FGK stars. Data at 100 and 160 mu m were obtained, complemented in some cases with observations at 70 mu m, and at 250, 350 and 500 mu m using SPIRE. The observing strategy was to integrate as deep as possible at 100 mu m to detect the stellar photosphere. Results. Debris discs have been detected at a fractional luminosity level down to several times that of the Edgeworth-Kuiper belt. The incidence rate of discs around the DUNES stars is increased from a rate of similar to 12.1% +/- 5% before Herschel to similar to 20.2% +/- 2%. A significant fraction (similar to 52%) of the discs are resolved, which represents an enormous step ahead from the previously known resolved discs. Some stars are associated with faint far-IR excesses attributed to a new class of cold discs. Although it cannot be excluded that these excesses are produced by coincidental alignment of background galaxies, statistical arguments suggest that at least some of them are true debris discs. Some discs display peculiar SEDs with spectral indexes in the 70-160 mu m range steeper than the Rayleigh-Jeans one. An analysis of the debris disc parameters suggests that a decrease might exist of the mean black body radius from the F-type to the K-type stars. In addition, a weak trend is suggested for a correlation of disc sizes and an anticorrelation of disc temperatures with the stellar age.


The Astronomical Journal | 2003

Hubble Space Telescope ACS Coronagraphic Imaging of the Circumstellar Disk around HD 141569A

Mark C. Clampin; John E. Krist; D. R. Ardila; David A. Golimowski; George F. Hartig; Holland C. Ford; G. D. Illingworth; Frank Bartko; N. Benítez; John P. Blakeslee; R. J. Bouwens; T. J. Broadhurst; Robert A. Brown; Christopher J. Burrows; E. S. Cheng; N. J. G. Cross; Paul D. Feldman; Marijn Franx; Caryl Gronwall; L. Infante; R. A. Kimble; Michael P. Lesser; Andre R. Martel; Felipe Menanteau; Gerhardt R. Meurer; G. K. Miley; Marc Postman; P. Rosati; Marco Sirianni; W. B. Sparks

Multicolor coronagraphic images of the circumstellar disk around HD 141569A have been obtained with the Hubble Space Telescope Advanced Camera for Surveys. The B, V, and I images show that the disks previously described multiple-ring structure is actually a continuous distribution of dust with a tightly wound spiral structure. Extending from the disk are two, more open spiral arms, one of which appears to reach the nearby binary star HD 141569BC. Diffuse dust is seen up to 1200 AU from HD 141569A. Although planets may exist in the inner region of the disk, tidal interaction with HD 141569BC seems more likely to be the cause of these phenomena. The disk appears redder than the star (B-V = 0.21 and V-I = 0.25), and its color is spatially uniform. A scattering asymmetry factor of g = 0.25–0.35 is derived. The azimuthal density distribution is asymmetric, varying by a factor of ~3 at some radii.


The Astrophysical Journal | 2001

Is It Round? Spectropolarimetry of the Type II-p Supernova 1999em

Douglas C. Leonard; Alexei V. Filippenko; D. R. Ardila; Michael S. Brotherton

We present the first multiepoch spectropolarimetry of a Type II plateau supernova (SN II-P), with optical observations of SN 1999em on days 7, 40, 49, 159, and 163 after discovery. These data are used to probe the geometry of the electron scattering atmosphere before, during, and after the plateau phase, which ended roughly 90 days after discovery. Weak continuum polarization with an unchanging polarization angle (θ ≈ 160°) is detected at all epochs, with p ≈ 0.2% on day 7, p ≈ 0.3% on days 40 and 49, and p ≈ 0.5% in the final observations. Distinct polarization modulations across strong line features are present on days 40, 49, 159, and 163. Uncorrected for interstellar polarization (which is believed to be quite small), polarization peaks are associated with strong P Cygni absorption troughs, and nearly complete depolarization is seen across the Hα emission profile. The temporal evolution of the continuum polarization and sharp changes across lines indicate polarization intrinsic to SN 1999em. When modeled in terms of the oblate, electron scattering atmospheres of Hoflich, the observed polarization suggests an asphericity of at least 7% during the period studied. The temporal polarization increase may indicate greater asphericity deeper into the ejecta. We discuss the implications of asphericity on the use of Type II-P supernovae as primary extragalactic distance indicators through the expanding photosphere method (EPM). If asphericity produces directionally dependent flux and peculiar galaxy motions are characterized by σ = 300 km s-1, it is shown that the agreement between previous EPM measurements of SNe II and distances to the host galaxies predicted by a linear Hubble law restricts mean SN II asphericity to values less than 30% (3 σ) during the photospheric phase.


The Astrophysical Journal | 2006

Discovery of an 86 AU Radius Debris Ring around HD 181327

Glenn Schneider; Murray D. Silverstone; Dean C. Hines; J.-C. Augereau; Christophe Pinte; Francois Menard; John E. Krist; Mark Clampin; C. A. Grady; David A. Golimowski; D. R. Ardila; Thomas Henning; Sebastian Wolf; Jens Rodmann

HST NICMOS PSF-subtractedcoronagraphicobservationsof HD181327haverevealedthepresenceofaringlike disk of circumstellar debris seen in 1.1 � m light scattered by the disk grains, surrounded by a diffuse outer region of lower surface brightness. The annular disk appears to be inclined by 31N7 � 1N6 from face-on, with the disk major-axis P.A. at 107 � � 2 � . The total 1.1 � m flux density of the light scattered by the disk (at 1B2 < r < 5B0) of 9:6 � 0:8 mJy is 0:17% � 0:015% of the starlight. Seventy percent of the light from the scattering grains appears to be confined in a 36AUwideannuluscenteredonthepeakoftheradialsurfacebrightness(SB)profile86:3 � 3:9AUfromthestar,well beyond the characteristic radius of thermal emission estimated from IRAS and Spitzer flux densities, assuming blackbody grains (� 22 AU). The 1.1 � m light scattered by the ring (1) appears bilaterally symmetric, (2) exhibits directionallypreferentialscatteringwellrepresentedbyaHenyey-Greensteinscatteringphasefunctionwith g HG ¼ 0:30 � 0:03, and (3) has a median SB (over all azimuth angles) at the 86.3 AU radius of peak SB of 1:00 � 0:07 mJy arcsec � 2 .N o photocentric offset is seen in the ring relative to the position of the central star. A low SB diffuse halo is seen in the NICMOS image to a distance of � 4 00 . Deeper 0.6 � m Hubble Space Telescope (HST) ACS PSF-subtracted coronagraphic observationsreveala faint (V � 21:5 mag arcsec � 2 ) outer nebulosityat4 00 < r < 9 00 , asymmetrically brighter to the north of the star. We discuss models of the disk and properties of its grains, from which we infer a maximum vertical scale height of 4Y8 AU at the 87.6 AU radius of maximum surface density, and a total maximum dust mass of collisionally replenished grains with minimum grain sizes of � 1 � mo f� 4MMoon. Subject headingg circumstellar matter — infrared: stars — planetary systems: protoplanetary disks — stars: individual (HD 181327)


The Astrophysical Journal | 2013

Accretion Rates for T Tauri Stars Using Nearly Simultaneous Ultraviolet and Optical Spectra

Laura Ingleby; Nuria Calvet; Gregory J. Herczeg; Alex Blaty; Frederick M. Walter; D. R. Ardila; R. D. Alexander; Suzan Edwards; Catherine Espaillat; S. G. Gregory; Lynne A. Hillenbrand; Alexander Brown

We analyze the accretion properties of 21 low-mass T Tauri stars using a data set of contemporaneous near-UV (NUV) through optical observations obtained with the Hubble Space Telescope Imaging Spectrograph and the ground-based Small and Medium Aperture Research Telescope System, a unique data set because of the nearly simultaneous broad wavelength coverage. Our data set includes accreting T Tauri stars in Taurus, Chamaeleon I, η Chamaeleon, and the TW Hydra Association. For each source we calculate the accretion rate (Ṁ) by fitting the NUV and optical excesses above the photosphere, produced in the accretion shock, introducing multiple accretion components characterized by a range in energy flux (or density) for the first time. This treatment is motivated by models of the magnetospheric geometry and accretion footprints, which predict that high-density, low filling factor accretion spots coexist with low-density, high filling factor spots. By fitting the UV and optical spectra with multiple accretion components, we can explain excesses which have been observed in the near-IR. Comparing our estimates of Ṁ to previous estimates, we find some discrepancies; however, they may be accounted for when considering assumptions for the amount of extinction and variability in optical spectra. Therefore, we confirm many previous estimates of the accretion rate. Finally, we measure emission line luminosities from the same spectra used for the Ṁ estimates, to produce correlations between accretion indicators (Hβ, Ca II K, C II], and Mg II) and accretion properties obtained simultaneously.


The Astrophysical Journal | 2003

STAR FORMATION AT z ~ 6: i-DROPOUTS IN THE ADVANCED CAMERA FOR SURVEYS GUARANTEED TIME OBSERVATION FIELDS

R. J. Bouwens; G. D. Illingworth; P. Rosati; C. Lidman; T. J. Broadhurst; Marijn Franx; Holland C. Ford; D. Magee; N. Benítez; John P. Blakeslee; Gerhardt R. Meurer; Mark C. Clampin; George F. Hartig; D. R. Ardila; Frank Bartko; Robert A. Brown; Christopher J. Burrows; E. S. Cheng; N. J. G. Cross; Paul D. Feldman; David A. Golimowski; Caryl Gronwall; Leopoldo Infante; Randy A. Kimble; J. E. Krist; Michael P. Lesser; Andre R. Martel; Felipe Menanteau; G. K. Miley; Marc Postman

Using an i - z dropout criterion, we determine the space density of z ~ 6 galaxies from two deep ACS GTO fields with deep optical-IR imaging. A total of 23 objects are found over 46 arcmin2, or ~0.5 ± 0.1 objects arcmin-2 down to zAB ~ 27.3 (6 σ), or a completeness-corrected ~0.5 ± 0.2 objects arcmin-2 down to zAB ~ 26.5 (including one probable z ~ 6 active galactic nucleus). Combining deep ISAAC data for our RDCS 1252-2927 field (JAB ~ 25.7 and Ks,AB ~ 25.0; 5 σ) and NICMOS data for the Hubble Deep Field-North (J110,AB and H160,AB ~ 27.3, 5 σ), we verify that these dropouts have relatively flat spectral slopes, as one would expect for star-forming objects at z ~ 6. Compared with the average-color (β = -1.3) U-dropout in the Steidel et al. z ~ 3 sample, i-dropouts in our sample range in luminosity from ~1.5L* (zAB ~ 25.6) to ~0.3L* (zAB ~ 27.3) with the exception of one very bright candidate at z850,AB ~ 24.2. The half-light radii vary from 009 to 021, or 0.5 kpc to 1.3 kpc. We derive the z ~ 6 rest-frame UV luminosity density (or star formation rate density) by using three different procedures. All three procedures use simulations based on a slightly lower redshift (z ~ 5) V606-dropout sample from Chandra Deep Field-South ACS images. First, we make a direct comparison of our findings with a no-evolution projection of this V-dropout sample, allowing us to automatically correct for the light lost at faint magnitudes or lower surface brightnesses. We find 23% ± 25% more i-dropouts than we predict, consistent with no strong evolution over this redshift range. Adopting previous results to z ~ 5, this works out to a mere 20% ± 29% drop in the luminosity density from z ~ 3 to z ~ 6. Second, we use the same V-dropout simulations to derive a detailed selection function for our i-dropout sample and compute the UV-luminosity density [(7.2 ± 2.5) × 1025 ergs s-1 Hz-1 Mpc-3 down to zAB ~ 27]. We find a 39% ± 21% drop over the same redshift range (z ~ 3-6), consistent with the first estimate. This is our preferred value and suggests a star formation rate of 0.0090 ± 0.0031 M☉ yr-1 Mpc-3 to zAB ~ 27, or ~0.036 ± 0.012 M☉ yr-1 Mpc-3 by extrapolating the luminosity function to the faint limit, assuming α = -1.6. Third, we follow a very similar procedure, except that we assume no incompleteness, and find a rest-frame continuum luminosity that is ~2-3 times lower than our other two determinations. This final estimate is to be taken as a lower limit and is important if there are modest changes in the colors or surface brightnesses from z ~ 5 to z ~ 6 (the other estimates assume no large changes in the intrinsic selectability of objects). We note that all three estimates are well within the canonical range of luminosity densities necessary for reionization of the universe at this epoch by star-forming galaxies.


The Astronomical Journal | 2005

HUBBLE SPACE TELESCOPE ADVANCED CAMERA FOR SURVEYS CORONAGRAPHIC IMAGING OF THE AU MICROSCOPII DEBRIS DISK

John E. Krist; D. R. Ardila; David A. Golimowski; M. Clampin; Holland C. Ford; G. D. Illingworth; George F. Hartig; Frank Bartko; N. Benítez; John P. Blakeslee; R. J. Bouwens; L. Bradley; T. J. Broadhurst; Robert A. Brown; Christopher J. Burrows; E. S. Cheng; N. J. G. Cross; R. Demarco; Paul D. Feldman; Marijn Franx; Tomotsugu Goto; Caryl Gronwall; B. Holden; N. Homeier; L. Infante; Randy A. Kimble; Michael P. Lesser; Andre R. Martel; S. Mei; Felipe Menanteau

We present Hubble Space Telescope Advanced Camera for Surveys multicolor coronagraphic images of the recently discovered edge-on debris disk around the nearby (� 10 pc) M dwarf AU Microscopii. The disk is seen between r ¼ 0B75 and 15 00 (7.5–150 AU) from the star. It has a thin midplane with a projected FWHM thickness of 2.5–3.5 AU within r < 50 AU of the star that increases to 6.5–9 AU at r � 75 AU. The disk’s radial brightness profile is generally flat forr < 15 AU, then decreases gradually (I / r � 1:8 )o ut tor � 43 AU, beyond which it falls rapidly (I / r � 4:7 ). Within 50 AU the midplane is straight and aligned with the star, and beyond that it deviates by � 3 � , resulting in a bowed appearance that was also seen in ground-based images. Three-dimensional modeling of the disk shows that the inner region (r < 50 AU) is inclined to the line of sight by less than 1 � and the outer disk by � 3 � . The inclination of the outer disk and moderate forward scattering (g � 0:4) can explain the apparentbow. The intrinsic, deprojected FWHM thickness is 1.5–10 AU, increasing with radius. The models indicate that the disk is clear of dust within � 12 AU of the star, in general agreement with the previous prediction of 17 AU based on the infrared spectral energy distribution. The disk is blue, being 60% brighter at B than I relative to the star. One possible explanation for this is that there is a surplus of very small grains compared with other imaged debris disks that have more neutral or red colors. This may be due to the low radiation pressure exerted by the late-type star. Observations at two epochs show that an extended source seen along the midplane is a background galaxy.

Collaboration


Dive into the D. R. Ardila's collaboration.

Top Co-Authors

Avatar

David A. Golimowski

Space Telescope Science Institute

View shared research outputs
Top Co-Authors

Avatar

John E. Krist

Jet Propulsion Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

George F. Hartig

Space Telescope Science Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Caryl Gronwall

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

N. Benítez

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Marijn Franx

Kapteyn Astronomical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge