Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where D. S. Jeffries is active.

Publication


Featured researches published by D. S. Jeffries.


Nature | 2007

Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry.

Dt Monteith; John L. Stoddard; Chris D. Evans; Heleen A. de Wit; Martin Forsius; Tore Høgåsen; Anders Wilander; Brit Lisa Skjelkvåle; D. S. Jeffries; Jussi Vuorenmaa; Bill Keller; Jiri Kopacek; Josef Vesely

Several hypotheses have been proposed to explain recent, widespread increases in concentrations of dissolved organic carbon (DOC) in the surface waters of glaciated landscapes across eastern North America and northern and central Europe. Some invoke anthropogenic forcing through mechanisms related to climate change, nitrogen deposition or changes in land use, and by implication suggest that current concentrations and fluxes are without precedent. All of these hypotheses imply that DOC levels will continue to rise, with unpredictable consequences for the global carbon cycle. Alternatively, it has been proposed that DOC concentrations are returning toward pre-industrial levels as a result of a gradual decline in the sulphate content of atmospheric deposition. Here we show, through the assessment of time series data from 522 remote lakes and streams in North America and northern Europe, that rising trends in DOC between 1990 and 2004 can be concisely explained by a simple model based solely on changes in deposition chemistry and catchment acid-sensitivity. We demonstrate that DOC concentrations have increased in proportion to the rates at which atmospherically deposited anthropogenic sulphur and sea salt have declined. We conclude that acid deposition to these ecosystems has been partially buffered by changes in organic acidity and that the rise in DOC is integral to recovery from acidification. Over recent decades, deposition-driven increases in organic matter solubility may have increased the export of DOC to the oceans, a potentially important component of regional carbon balances. The increase in DOC concentrations in these regions appears unrelated to other climatic factors.


Nature | 1999

Regional trends in aquatic recovery from acidification in North America and Europe

John L. Stoddard; D. S. Jeffries; A. Lükewille; Thomas A. Clair; Peter J. Dillon; Charles T. Driscoll; Martin Forsius; M. Johannessen; Jeffrey S. Kahl; J.H. Kellogg; A. Kemp; J. Mannlo; Dt Monteith; Peter S. Murdoch; S. Patrick; A. Rebsdorl; Brit Lisa Skjelkvåle; M. P. Stainton; T. Traaen; H. Van Dam; Katherine E. Webster; J. Wleting; A. Wllander

Rates of acidic deposition from the atmosphere (‘acid rain’) have decreased throughout the 1980s and 1990s across large portions of North America and Europe. Many recent studies have attributed observed reversals in surface-water acidification at national and regional scales to the declining deposition. To test whether emissions regulations have led to widespread recovery in surface-water chemistry, we analysed regional trends between 1980 and 1995 in indicators of acidification (sulphate, nitrate and base-cation concentrations, and measured (Gran) alkalinity) for 205 lakes and streams in eight regions of North America and Europe. Dramatic differences in trend direction and strength for the two decades are apparent. In concordance with general temporal trends in acidic deposition, lake and stream sulphate concentrations decreased in all regions with the exception of Great Britain; all but one of these regions exhibited stronger downward trends in the 1990s than in the 1980s. In contrast, regional declines in lake and stream nitrate concentrations were rare and, when detected, were very small. Recovery in alkalinity, expected wherever strong regional declines in sulphate concentrations have occurred, was observed in all regions of Europe, especially in the 1990s, but in only one region (of five) in North America. We attribute the lack of recovery in three regions (south/central Ontario, the Adirondack/Catskill mountains and midwestern North America) to strong regional declines in base-cation concentrations that exceed the decreases in sulphate concentrations.


Water Resources Research | 1996

Regulation of nitrate-N release from temperate forests: A test of the N flushing hypothesis

Irena F. Creed; Lawrence E. Band; N. W. Foster; I. K. Morrison; J. A. Nicolson; R. S. Semkin; D. S. Jeffries

During the past decade, significant spatial and temporal variability in the release of nitrate-nitrogen (N) from catchments in a sugar maple forest in central Ontario was observed. To explain this variability, we tested the flushing hypothesis [Hornberger et al., 1994], where, when the soil saturation deficit is high, N accumulates in the upper layers of the soil and, as the soil saturation deficit decreases, the formation of a saturated subsurface layer flushes N from the upper layers of the soil into the stream. We used the Regional Hydro-Ecological Simulation System to simulate water, carbon, and N dynamics. A N flushing index was modeled as S/S30, the ratio of the current day saturation deficit to the previous 30-day average saturation deficit. A N source index was modeled as the ratio of N supply/demand. The relationship between the simulated N indices and the observed release of N indicated two mechanisms for the release of N from catchments: (1) a N flushing mechanism, where the N-enriched upper layer of the soil is flushed, after a period of low demand for N by the forest (e.g., during spring snowmelt and autumn stormflow, the water table rising into previously unsaturated parts of a N-enriched soil profile) or after a period of high demand for N by the forest (e.g., during summer droughts, the water table rising into previously saturated parts of a N-impoverished soil profile following a period of enhanced rates of nitrification); and (2) a N draining mechanism, where spring snowmelt recharge of the groundwater translocates N from the upper layer of the soil into deeper hydrological flow pathways that are released slowly over the year.


Science | 2008

The Widespread Threat of Calcium Decline in Fresh Waters

Adam Jeziorski; Norman D. Yan; Andrew M. Paterson; Anna M. Desellas; Michael A. Turner; D. S. Jeffries; Bill Keller; Russ C. Weeber; Don K. McNicol; Michelle E. Palmer; Kyle McIver; Kristina M.A. Arseneau; Brian K. Ginn; Brian F. Cumming; John P. Smol

Calcium concentrations are now commonly declining in softwater boreal lakes. Although the mechanisms leading to these declines are generally well known, the consequences for the aquatic biota have not yet been reported. By examining crustacean zooplankton remains preserved in lake sediment cores, we document near extirpations of calcium-rich Daphnia species, which are keystone herbivores in pelagic food webs, concurrent with declining lake-water calcium. A large proportion (62%, 47 to 81% by region) of the Canadian Shield lakes we examined has a calcium concentration approaching or below the threshold at which laboratory Daphnia populations suffer reduced survival and fecundity. The ecological impacts of environmental calcium loss are likely to be both widespread and pronounced.


AMBIO: A Journal of the Human Environment | 2003

Assessing the Recovery of Lakes in Southeastern Canada from the Effects of Acidic Deposition

D. S. Jeffries; Thomas A. Clair; Suzanne Couture; Peter J. Dillon; Jacques Dupont; W. Keller; Donald K. McNicolD.K. McNicol; Michael A. Turner; Robert Vet; Russell Weeber

Abstract Reductions in North American sulfur dioxide (SO2) emissions promoted expectations that aquatic ecosystems in southeastern Canada would soon recover from acidification. Only lakes located near smelters that have dramatically reduced emissions approach this expectation. Lakes in the Atlantic provinces, Quebec and Ontario affected only by long-range sources show a general decline in sulfate (SO42−) concentrations, but with a relatively smaller compensating increase in pH or alkalinity. Several factors may contribute to the constrained (or most likely delayed) acidity response: declining base cation concentrations, drought-induced mobilization of SO42−, damaged internal alkalinity generation mechanisms, and perhaps increasing nitrate or organic anion levels. Monitoring to detect biological recovery in southeastern Canada is extremely limited, but where it occurs, there is little evidence of recovery outside of the Sudbury/Killarney area. Both the occurrence of Atlantic salmon in Nova Scotia rivers and the breeding success of Common Loons in Ontario lakes are in fact declining although factors beyond acidification also play a role. Chemical and biological models predict that much greater SO2 emission reductions than those presently required by legislation will be needed to promote widespread chemical and latterly, biological recovery. It may be unrealistic to expect that pre-industrial chemical and biological conditions can ever be reestablished in many lakes of southeastern Canada.


Ecosystems | 2001

Tracing the Sources of Exported Nitrate in the Turkey Lakes Watershed Using 15N/14N and 18O/16O isotopic ratios

John Spoelstra; Sherry L. Schiff; Richard J. Elgood; R. G. Semkin; D. S. Jeffries

Nitrate produced by bacterially mediated nitrification in soils is isotopically distinct from atmospheric nitrate in precipitation. 15N/14N and 18O/16O isotopic ratios of nitrate can therefore be used to distinguish between these two sources of nitrate in surface waters and groundwaters. Two forested catchments in the Turkey Lakes Watershed (TLW) near Sault Ste. Marie, Ontario, Canada were studied to determine the relative contributions of atmospheric and microbial nitrate to nitrate export. The TLW is reasonably undisturbed and receives a moderate amount of inorganic nitrogen bulk deposition (8.7 kg N · ha−1· yr−1) yet it exhibits unusually low inorganic nitrogen retention (average = 65% of deposition). The measured isotopic ratios for nitrate in precipitation ranged from +35 to +59‰ (VSMOW) for δ18O and −4 to +0.8‰ (AIR) for δ15N. Nitrate produced from nitrification at the TLW is expected to have an average isotope value of approximately −1.0‰ for δ18O and a value of about 0 to +6‰ for δ15N, thus, the isotopic separation between atmospheric and soil sources of nitrate is substantial. Nitrate produced by nitrification of ammonium appears to be the dominant source of the nitrate exported in both catchments, even during the snowmelt period. These whole catchment results are consistent with the results of small but intensive plot scale studies that have shown that the majority of the nitrate leached from these catchments is microbial in origin. The isotopic composition of stream nitrate provides information about N-cycling in the forested upland and riparian zones on a whole catchment basis.


Water Air and Soil Pollution | 2014

Trends in Surface Water Chemistry in Acidified Areas in Europe and North America from 1990 to 2008

Øyvind Aaberg Garmo; Brit Lisa Skjelkvåle; Heleen A. de Wit; Luca Colombo; Cj Curtis; Jens Fölster; Andreas Hoffmann; Jakub Hruška; Tore Høgåsen; D. S. Jeffries; W. Bill Keller; Pavel Krám; Vladimir Majer; Dt Monteith; Andrew M. Paterson; Michela Rogora; Dorota Rzychoń; Sandra Steingruber; John L. Stoddard; Jussi Vuorenmaa; Adam Worsztynowicz

Acidification of lakes and rivers is still an environmental concern despite reduced emissions of acidifying compounds. We analysed trends in surface water chemistry of 173 acid-sensitive sites from 12 regions in Europe and North America. In 11 of 12 regions, non-marine sulphate (SO4*) declined significantly between 1990 and 2008 (−15 to −59xa0%). In contrast, regional and temporal trends in nitrate were smaller and less uniform. In 11 of 12 regions, chemical recovery was demonstrated in the form of positive trends in pH and/or alkalinity and/or acid neutralising capacity (ANC). The positive trends in these indicators of chemical recovery were regionally and temporally less distinct than the decline in SO4* and tended to flatten after 1999. From an ecological perspective, the chemical quality of surface waters in acid-sensitive areas in these regions has clearly improved as a consequence of emission abatement strategies, paving the way for some biological recovery.


Archive | 1990

Snowpack Storage of Pollutants, Release during Melting, and Impact on Receiving Waters

D. S. Jeffries

Information on the snowpack content of major ions, trace metals, and organic contaminants (pesticides and total PCBs) has been reviewed and discussed. Although several limitations exist, regional snowpack surveys have been successfully used to delineate spatial trends in acidic deposition. In contrast to the annual anionic predominance of SO 4 2- in atmospheric deposition, NO 3 - is often of a similar magnitude or even greater than SO 4 2- in the snowpack in locations affected by acidic deposition. Trace metal concentrations are generally greater than tenfold higher at European and North American regional locations than in Arctic or Antarctic “background” sites. The dry deposited component of the total snowpack pollutant load is generally less significant (1% to 45%) than the wet-deposited component, although there is much variability among chemical parameters and locations. There is conflicting evidence on the premelt stability of snowpacks; stability is clearly governed by many factors, and the occurrence of unfrozen underlying soils may be very important. The net radiative energy flux is primarily responsible for melting. Delivery of meltwater is often greatly complicated by the snowpack mesostructure; ice layers and the development of within-pack pipe flow can make modeling of this process very difficult. Rain-on-snow events can be very important both hydrologically and chemically. Fractionation of the pollutants during normal snowpack metamorphosis gives early meltwater ion and metal concentrations that are five- to ten-fold greater than those in the parent snow. Major ions are lost from the snowpack at differing rates during melting, a process known as preferential elution. Springtime reductions in pH, acid-neutralizing capacity, and base cations observed in surface waters occur due to both simple dilution and the differential release of snowpack pollutants. In contrast, lake and stream concentrations of Al and NO 3 - typically increase, although the behavior of the latter is variable from location to location. Concentrations of SO 4 2- remain comparatively constant, an observation attributed to rapid excahnge of this ion in the soil environment. In lakes, the effect of snowmelt is generally limited to a near surface layer, 1 to 3 m thick. The spring melt event may hold grave consequences for several species of aquatic biota; most reported fishkill events have occurred in Scandinavia.


Environmental Monitoring and Assessment | 2003

Monitoring the results of Canada/U.S.A. acid rain control programs: some lake responses.

D. S. Jeffries; T.G. Brydges; Peter J. Dillon; W. Keller

Aquatic acidification by deposition of airborne pollutants emerged as an environmental issue in southeastern Canada during the 1970s. Drawing information from the extensive research and monitoring programs, a sequence of issue assessments demonstrated the necessity of reducing the anthropogenic emissions of acidifying pollutants, particularly sulphur dioxide (SO2). The 1991 Canada-U.S. Air Quality Agreement (AQA) was negotiated to reduce North American SO2 emissions by ∼40% relative to 1980 levels by 2010, and at present, both countries have reduced emissions beyond their AQA commitment. In response to reduced SO2 emissions, atmospheric deposition of sulphate (SO42−) and SO42− concentrations in many lakes have declined, particularly in south-central Ontario and southern Québec. Sulphate deposition still exceeds aquatic critical loads throughout southeastern Canada however. Increasing pH or alkalinity (commonly deemed ‘recovery’) has been observed in only some lakes. Several biogeochemical factors have intervened to modify the lake chemistry response to reduced SO42− input, notably release of stored SO42− from wetlands following periods of drought and reduction in the export of base cations from terrestrial soils. Three examples from Ontario are presented to illustrate these responses. Significant increases in pH and alkalinity have been observed in many lakes in the Sudbury area of Ontario due to the large reductions in local SO2 emissions; ‘early-stage’ biological recovery is evident in these lakes. An integrated assessment model predicts that AQA emission reductions will not be sufficient to promote widespread chemical or biological recovery of Canadian lakes. Monitoring and modeling are mutually supporting assessment activities and both must continue.


Water Air and Soil Pollution | 1995

Trends in surface water acidification at ecological monitoring sites in southeastern Canada (1981-1993)

D. S. Jeffries; Thomas A. Clair; Peter J. Dillon; M. Papineau; M. P. Stainton

Atmospheric deposition and surface water chemistry have been monitored intensively at 5 geologically “sensitive” sites in southeastern Canada. The sites receive differing acid inputs that span the entire range found in Canada. Surface water data collected at 9 stations from 1981 to 1993 for SO42−, NO3−, Alkalinity, DOC, pH, Ca2+ and Mg2+ have been analyzed to detect monotonic trends. Similarities between the temporal patterns and trends for SO42−in deposition and surface water suggest that they are strongly linked at our sites. Our 13-year datasets showed significant negative SO42−trends at the 3 Ontario sites and a positive trend in Nova Scotia. A climatically-induced SO42−increase in northwestern Ontario has been reversed. Mobilization and export of adsorbed SO42−and/or reoxidized S from the basins of central Ontario sites is delaying their recovery. Two of our 9 stations (in Quebec and central Ontario) are continuing to acidify. The 2 Nova Scotia stations have the highest DOC levels and both exhibit a decreasing trend. Ionic compensation for declining SO42−varies from station to station, sometimes involving an Alk increase, sometimes a base cation decrease, and sometimes more complex combinations. Additional factors (e.g. climatic variation) also influence variable trends, and data records longer than those presently available will be needed to unequivocally verify acidification recovery.

Collaboration


Dive into the D. S. Jeffries's collaboration.

Top Co-Authors

Avatar

R. G. Semkin

National Water Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John L. Stoddard

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Irena F. Creed

University of Saskatchewan

View shared research outputs
Top Co-Authors

Avatar

Michela Rogora

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Dt Monteith

University College London

View shared research outputs
Researchain Logo
Decentralizing Knowledge