D. Schertl
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by D. Schertl.
Astronomy and Astrophysics | 2007
Romain G. Petrov; F. Malbet; G. Weigelt; P. Antonelli; Udo Beckmann; Y. Bresson; A. Chelli; M. Dugué; G. Duvert; S. Gennari; L. Glück; P. Kern; S. Lagarde; E. Le Coarer; Franco Lisi; F. Millour; K. Perraut; P. Puget; Fredrik T. Rantakyrö; Sylvie Robbe-Dubois; A. Roussel; Piero Salinari; E. Tatulli; G. Zins; M. Accardo; B. Acke; K. Agabi; E. Altariba; B. Arezki; E. Aristidi
Context: Optical long-baseline interferometry is moving a crucial step forward with the advent of general-user scientific instruments that equip large aperture and hectometric baseline facilities, such as the Very Large Telescope Interferometer (VLTI). Aims: AMBER is one of the VLTI instruments that combines up to three beams with low, moderate and high spectral resolutions in order to provide milli-arcsecond spatial resolution for compact astrophysical sources in the near-infrared wavelength domain. Its main specifications are based on three key programs on young stellar objects, active galactic nuclei central regions, masses, and spectra of hot extra-solar planets. Methods: These key science goals led to scientific specifications, which were used to propose and then validate the instrument concept. AMBER uses single-mode fibers to filter the entrance signal and to reach highly accurate, multiaxial three-beam combination, yielding three baselines and a closure phase, three spectral dispersive elements, and specific self-calibration procedures. Results: The AMBER measurements yield spectrally dispersed calibrated visibilities, color-differential complex visibilities, and a closure phase allows astronomers to contemplate rudimentary imaging and highly accurate visibility and phase differential measurements. AMBER was installed in 2004 at the Paranal Observatory. We describe here the present implementation of the instrument in the configuration with which the astronomical community can access it. Conclusions: .After two years of commissioning tests and preliminary observations, AMBER has produced its first refereed publications, allowing assessment of its scientific potential.
Astronomy and Astrophysics | 2007
E. Tatulli; F. Millour; A. Chelli; G. Duvert; B. Acke; O. Hernandez Utrera; Karl-Heinz Hofmann; Stefan Kraus; Fabien Malbet; P. Mège; Romain G. Petrov; Martin Vannier; G. Zins; P. Antonelli; Udo Beckmann; Y. Bresson; M. Dugué; S. Gennari; L. Glück; P. Kern; S. Lagarde; E. Le Coarer; Franco Lisi; K. Perraut; P. Puget; Fredrik T. Rantakyrö; Sylvie Robbe-Dubois; A. Roussel; G. Weigelt; M. Accardo
Aims. In this paper, we present an innovative data reduction method for single-mode interferometry. It has been specifically developed for the AMBER instrument, the three-beam combiner of the Very Large Telescope Interferometer, but it can be derived for any single-mode interferometer. Methods. The algorithm is based on a direct modelling of the fringes in the detector plane. As such, it requires a preliminary calibration of the instrument in order to obtain the calibration matrix that builds the linear relationship between the interferogram and the interferometric observable, which is the complex visibility. Once the calibration procedure has been performed, the signal processing appears to be a classical least-square determination of a linear inverse problem. From the estimated complex visibility, we derive the squared visibility, the closure phase, and the spectral differential phase. Results. The data reduction procedures have been gathered into the so-called amdlib software, now available for the community, and are presented in this paper. Furthermore, each step in this original algorithm is illustrated and discussed from various on-sky observations conducted with the VLTI, with a focus on the control of the data quality and the effective execution of the data reduction procedures. We point out the present limited performances of the instrument due to VLTI instrumental vibrations which are difficult to calibrate.
Astronomy and Astrophysics | 2008
Stefan Kraus; Karl-Heinz Hofmann; M. Benisty; J.-P. Berger; O. Chesneau; Andrea Isella; Fabien Malbet; Anthony Meilland; N. Nardetto; A. Natta; Thomas Preibisch; D. Schertl; Michael D. Smith; P. Stee; E. Tatulli; L. Testi; G. Weigelt
Context. Accretion and outflow processes are of fundamental importance for our understanding of the formation of stars and planetary systems. To trace these processes, diagnostic spectral lines such as the Brγ 2.166 μm line are widely used, although due to a lack of spatial resolution, the origin of the line emission is still unclear. Aims. Employing the AU-scale spatial resolution which can be achieved with infrared long-baseline interferometry, we aim to distinguish between theoretical models which associate the Brγ line emission with mass infall (magnetospheric accretion, gaseous inner disks) or mass outflow processes (stellar winds, X-winds, or disk winds). Methods. Using the VLTI/AMBER instrument, we spatially and spectrally (λ/Δλ = 1500) resolved the inner (≾5 AU) environment of five Herbig Ae/Be stars (HD163296, HD104237, HD98922, MWC297, V921 Sco) in the Brγ emission line as well as in the adjacent continuum. From the measured wavelength-dependent visibilities, we derive the characteristic size of the continuum and Brγ line-emitting region. Additional information is provided by the closure phase, which we could measure both in the continuum wavelength regime (for four objects) as well as in the spectrally resolved Brγ emission line (for one object). The spectro-interferometric data is supplemented by archival and new VLT/ISAAC spectroscopy. Results. For all objects (except MWC297), we measure an increase of visibility within the Brγ emission line, indicating that the Brγ-emitting region in these objects is more compact than the dust sublimation radius. For HD98922, our quantitative analysis reveals that the line-emitting region is compact enough to be consistent with the magnetospheric accretion scenario. For HD163296, HD104237, MWC297, and V921 Sco we identify an extended stellar wind or a disk wind as the most likely line-emitting mechanism. Since the stars in our sample cover a wide range of stellar parameters, we also search for general trends and find that the size of the Brγ-emitting region does not seem to depend on the basic stellar parameters (such as the stellar luminosity), but correlates with spectroscopic properties, in particular with the Hα line profile shape. Conclusions. By performing the first high-resolution spectro-interferometric survey on Herbig Ae/Be stars, we find evidence for at least two distinct Brγ line-formation mechanisms. Most significant, stars with a P-Cygni Hα line profile and a high mass-accretion rate seem to show particularly compact Brγ-emitting regions (R_(Brγ)/R_(cont) < 0.2), while stars with a double-peaked or single-peaked Hα-line profile show a significantly more extended Brγ-emitting region (0.6 ≾ R_(Brγ)/R_(cont) ≾ 1.4), possibly tracing a stellar wind or a disk wind.
Nature | 2010
Stefan Kraus; Karl-Heinz Hofmann; K. M. Menten; D. Schertl; G. Weigelt; F. Wyrowski; Anthony Meilland; K. Perraut; Romain G. Petrov; Sylvie Robbe-Dubois; P. Schilke; Leonardo Testi
Circumstellar disks are an essential ingredient of the formation of low-mass stars. It is unclear, however, whether the accretion-disk paradigm can also account for the formation of stars more massive than about 10 solar masses, in which strong radiation pressure might halt mass infall. Massive stars may form by stellar merging, although more recent theoretical investigations suggest that the radiative-pressure limit may be overcome by considering more complex, non-spherical infall geometries. Clear observational evidence, such as the detection of compact dusty disks around massive young stellar objects, is needed to identify unambiguously the formation mode of the most massive stars. Here we report near-infrared interferometric observations that spatially resolve the astronomical-unit-scale distribution of hot material around a high-mass (∼20 solar masses) young stellar object. The image shows an elongated structure with a size of ∼13 × 19 astronomical units, consistent with a disk seen at an inclination angle of ∼45°. Using geometric and detailed physical models, we found a radial temperature gradient in the disk, with a dust-free region less than 9.5 astronomical units from the star, qualitatively and quantitatively similar to the disks observed in low-mass star formation. Perpendicular to the disk plane we observed a molecular outflow and two bow shocks, indicating that a bipolar outflow emanates from the inner regions of the system.
Astronomy and Astrophysics | 2002
Alexander B. Men'shchikov; D. Schertl; Peter G. Tuthill; G. Weigelt; Lev R. Yungelson
New diffraction-limited speckle images of the Red Rectangle in the wavelength range 2.1-3.3 µm with angular resolutions of 44-68 mas (Tuthill et al. 2002) and previous speckle images at 0.7-2.2 µm (Osterbart et al. 1997; Menshchikov et al. 1998) revealed well-resolved bright bipolar outflow lobes and long X-shaped spikes originating deep inside the outflow cavities. This set of high-resolution images stimulated us to reanalyze all infrared observations of the Red Rectangle using our two-dimensional radiative transfer code. The high-resolution images imply a geometrically and optically thick torus-like density distribution with bipolar conical cavities and are inconsistent with the flat disk geometry frequently used to visualize bipolar nebulae. The new detailed modeling, together with estimates of the interstellar extinction in the direction of the Red Rectangle enabled us to more accurately determine one of the key parameters, the distance D ≈ 710pc with model uncertainties of 70pc, which is twice as far as the commonly used estimate of 330pc. The central binary is surrounded by a compact, massive (M ≈ 1.2M⊙), very dense dusty torus with hydrogen densities reaching nH ≈ 2.5 ×10 12 cm −3 (dust-to-gas mass ratiod/� ≈ 0.01). The model implies that most of the dust mass in the dense torus is in very large particles and, on scales of more than an arcsecond, the polar outflow regions are denser than the surrounding medium. The bright component of the spectroscopic binary HD44179 is a post-AGB star with mass M⋆ ≈ 0.57M⊙, luminosity L⋆ ≈ 6000L⊙, and effective temperature T⋆ ≈ 7750K. Based on the orbital elements of the binary, we identify its invisible component with a helium white dwarf with MWD ≈ 0.35M⊙, LWD ∼ 100L⊙, and TWD ∼ 6 ×10 4 K. The hot white dwarf ionizes the low-density bipolar outflow cavities inside the dense torus, producing a small HII region observed at radio wavelengths. We propose an evolutionary scenario for the formation of the Red Rectangle nebula, in which the binary initially had 2.3 and 1.9M⊙ components at a separation of ∼ 130R⊙. The nebula was formed in the ejection of a common envelope after Roche lobe overflow by the present post-AGB star.
Astronomy and Astrophysics | 2007
Fabien Malbet; M. Benisty; W. J. de Wit; S. Kraus; A. Meilland; F. Millour; E. Tatulli; J.-P. Berger; O. Chesneau; Karl-Heinz Hofmann; Andrea Isella; A. Natta; Romain G. Petrov; Thomas Preibisch; P. Stee; L. Testi; G. Weigelt; P. Antonelli; Udo Beckmann; Y. Bresson; A. Chelli; G. Duvert; L. Glück; P. Kern; S. Lagarde; E. Le Coarer; Franco Lisi; K. Perraut; Sylvie Robbe-Dubois; A. Roussel
The young stellar object MWC 297 is an embedded B1.5Ve star exhibiting strong hydrogen emission lines and a strong near-infrared continuum excess. This object has been observed with the VLT interferometer equipped with the AMBER instrument during its first commissioning run. VLTI/AMBER is currently the only near infrared interferometer which can observe spectrally dispersed visibilities. MWC 297 has been spatially resolved in the continuum with a visibility of
Astronomy and Astrophysics | 2007
S. Kraus; Yu. Yu. Balega; J.-P. Berger; K.-H. Hofmann; R. Millan-Gabet; John D. Monnier; Keiichi Ohnaka; Ettore Pedretti; Th. Preibisch; D. Schertl; F. P. Schloerb; Wesley A. Traub; G. Weigelt
0.50^{+0.08}_{-0.10}
Astronomy and Astrophysics | 2011
Keiichi Ohnaka; G. Weigelt; F. Millour; K.-H. Hofmann; T. Driebe; D. Schertl; A. Chelli; F. Massi; Romain G. Petrov; Ph. Stee
as well as in the Brgamma emission line where the visibility decrease to a lower value of
Astronomy and Astrophysics | 2009
S. Kraus; G. Weigelt; Yu. Yu. Balega; J. A. Docobo; K.-H. Hofmann; Th. Preibisch; D. Schertl; Vakhtang S. Tamazian; T. Driebe; Keiichi Ohnaka; Romain G. Petrov; M. Schöller; M. D. Smith
0.33\pm0.06
Astronomy and Astrophysics | 2007
E. Tatulli; Andrea Isella; A. Natta; L. Testi; A. Marconi; Fabien Malbet; P. Stee; Romain G. Petrov; F. Millour; A. Chelli; G. Duvert; P. Antonelli; Udo Beckmann; Y. Bresson; M. Dugué; S. Gennari; L. Glück; P. Kern; S. Lagarde; E. Le Coarer; Franco Lisi; K. Perraut; P. Puget; Fredrik T. Rantakyrö; Sylvie Robbe-Dubois; A. Roussel; G. Weigelt; G. Zins; M. Accardo; B. Acke
. This change in the visibility with the wavelength can be interpreted by the presence of an optically thick disk responsible for the visibility in the continuum and of a stellar wind traced by the Brgamma emission line and whose apparent size is 40% larger. We validate this interpretation by building a model of the stellar environment that combines a geometrically thin, optically thick accretion disk model consisting of gas and dust, and a latitude-dependent stellar wind outflowing above the disk surface. The continuum emission and visibilities obtained from this model are fully consistent with the interferometric AMBER data. They agree also with existing optical, near-infrared spectra and other broad-band near-infrared interferometric visibilities. We also reproduce the shape of the visibilities in the Brgamma line as well as the profile of this line obtained at an higher spectral resolution with the VLT/ISAAC spectrograph, and those of the Halpha and Hbeta lines. The disk and wind models yield a consistent inclination of the system of approximately 20 degrees. A picture emerges in which MWC 297 is surrounded by an equatorial flat disk that is possibly still accreting and an outflowing wind which has a much higher velocity in the polar region than at the equator. The VLTI/AMBER unique capability to measure spectral visibilities therefore allows us for the first time to compare the apparent geometry of a wind with the disk structure in a young stellar system.