Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where D. Shaul is active.

Publication


Featured researches published by D. Shaul.


Classical and Quantum Gravity | 2005

The LTP experiment on the LISA Pathfinder mission

S. Anza; M Armano; E. Balaguer; M. Benedetti; C. Boatella; P. Bosetti; D. Bortoluzzi; N. Brandt; Claus Braxmaier; Martin E. Caldwell; L. Carbone; A. Cavalleri; A. Ciccolella; I. Cristofolini; M. Cruise; M. Da Lio; Karsten Danzmann; D. Desiderio; R. Dolesi; N. Dunbar; Walter Fichter; C. Garcia; E. Garcia-Berro; A. F. Garcia Marin; R. Gerndt; Alberto Gianolio; Domenico Giardini; R. Gruenagel; A. Hammesfahr; Gerhard Heinzel

We report on the development of the LISA Technology Package (LTP) experiment that will fly onboard the LISA Pathfinder mission of the European Space Agency in 2008. We first summarize the science rationale of the experiment aimed at showing the operational feasibility of the so-called transverse–traceless coordinate frame within the accuracy needed for LISA. We then show briefly the basic features of the instrument and we finally discuss its projected sensitivity and the extrapolation of its results to LISA.


Classical and Quantum Gravity | 2009

LISA Pathfinder: the experiment and the route to LISA

M. Armano; M. Benedetti; J. Bogenstahl; D. Bortoluzzi; P. Bosetti; N. Brandt; A. Cavalleri; G. Ciani; I. Cristofolini; A. M. Cruise; Karsten Danzmann; I. Diepholz; G. Dixon; R. Dolesi; J. Fauste; L. Ferraioli; D. Fertin; Walter Fichter; M. Freschi; Antonio Garcia; C. Garcia; A. Grynagier; F. Guzman; E. Fitzsimons; Gerhard Heinzel; M. Hewitson; D. Hollington; J. Hough; M. Hueller; D. Hoyland

LISA Pathfinder (LPF) is a science and technology demonstrator planned by the European Space Agency in view of the LISA mission. As a scientific payload, the LISA Technology Package on board LPF will be the most precise geodesics explorer flown as of today, both in terms of displacement and acceleration sensitivity. The challenges embodied by LPF make it a unique mission, paving the way towards the space-borne detection of gravitational waves with LISA. This paper summarizes the basics of LPF, and the progress made in preparing its effective implementation in flight. We hereby give an overview of the experiment philosophy and assumptions to carry on the measurement. We report on the mission plan and hardware design advances and on the progress on detailing measurements and operations. Some light will be shed on the related data processing algorithms. In particular, we show how to single out the acceleration noise from the spacecraft motion perturbations, how to account for dynamical deformation parameters distorting the measurement reference and how to decouple the actuation noise via parabolic free flight.


Classical and Quantum Gravity | 2003

Gravitational sensor for LISA and its technology demonstration mission

R. Dolesi; D. Bortoluzzi; P. Bosetti; L. Carbone; A. Cavalleri; I. Cristofolini; M DaLio; Giorgio Fontana; V. Fontanari; B Foulon; C. D. Hoyle; M. Hueller; F. Nappo; P. Sarra; D. Shaul; Tamara Sumner; W. J. Weber; S. Vitale

We describe the current design of the European gravitational sensor (GS) for the LISA Technology Package (LTP) that, on board the mission SMART-2, aims to demonstrate geodetic motion within one order of magnitude of the anticipated LISA performance. We report also the development of a noise model used in assessing the performance and determining the feasibility of achieving the overall noise goals for the GS. This analysis includes environmental effects that will be present in the sensor. Finally, we discuss open questions regarding the GS for LTP and LISA, ground testing, and verification issues.


Classical and Quantum Gravity | 2011

LISA Pathfinder: mission and status

F. Antonucci; M. Armano; H. Audley; G. Auger; M. Benedetti; P. Binetruy; C. Boatella; J. Bogenstahl; D. Bortoluzzi; Paolo Bosetti; M. Caleno; A. Cavalleri; M. Cesa; M. Chmeissani; G. Ciani; A. Conchillo; Giuseppe Congedo; I. Cristofolini; M. Cruise; Karsten Danzmann; F. De Marchi; M. Diaz-Aguilo; I. Diepholz; G. Dixon; R. Dolesi; N. Dunbar; J. Fauste; L. Ferraioli; D. Fertin; Walter Fichter

LISA Pathfinder, the second of the European Space Agencys Small Missions for Advanced Research in Technology (SMART), is a dedicated technology demonstrator for the joint ESA/NASA Laser Interferometer Space Antenna (LISA) mission. The technologies required for LISA are many and extremely challenging. This coupled with the fact that some flight hardware cannot be fully tested on ground due to Earth-induced noise led to the implementation of the LISA Pathfinder mission to test the critical LISA technologies in a flight environment. LISA Pathfinder essentially mimics one arm of the LISA constellation by shrinking the 5 million kilometre armlength down to a few tens of centimetres, giving up the sensitivity to gravitational waves, but keeping the measurement technology: the distance between the two test masses is measured using a laser interferometric technique similar to one aspect of the LISA interferometry system. The scientific objective of the LISA Pathfinder mission consists then of the first in-flight test of low frequency gravitational wave detection metrology. LISA Pathfinder is due to be launched in 2013 on-board a dedicated small launch vehicle (VEGA). After a series of apogee raising manoeuvres using an expendable propulsion module, LISA Pathfinder will enter a transfer orbit towards the first Sun?Earth Lagrange point (L1). After separation from the propulsion module, the LPF spacecraft will be stabilized using the micro-Newton thrusters, entering a 500?000 km by 800?000 km Lissajous orbit around L1. Science results will be available approximately 2 months after launch.


Astroparticle Physics | 2005

Detailed calculation of test-mass charging in the LISA mission

H.M. Araújo; P. Wass; D. Shaul; G. K. Rochester; T. J. Sumner

Abstract The electrostatic charging of the LISA test masses due to exposure of the spacecraft to energetic particles in the space environment has implications in the design and operation of the gravitational inertial sensors and can affect the quality of the science data. Robust predictions of charging rates and associated stochastic fluctuations are therefore required for the exposure scenarios expected throughout the mission. We report on detailed charging simulations with the Geant4 toolkit, using comprehensive geometry and physics models, for Galactic cosmic-ray protons and helium nuclei. These predict positive charging rates of 50+e/s (elementary charges per second) for solar minimum conditions, decreasing by half at solar maximum, and current fluctuations of up to 30+e/s/Hz 1/2 . Charging from sporadic solar events involving energetic protons was also investigated. Using an event-size distribution model, we conclude that their impact on the LISA science data is manageable. Several physical processes hitherto unexplored as potential charging mechanisms have also been assessed. Significantly, the kinetic emission of very low-energy secondary electrons due to bombardment of the inertial sensors by primary cosmic rays and their secondaries can produce charging currents comparable with the Monte Carlo rates.


Classical and Quantum Gravity | 2012

The LISA Pathfinder Mission

F. Antonucci; M. Armano; H. Audley; G. Auger; M. Benedetti; P. Binetruy; J. Bogenstahl; D. Bortoluzzi; Paolo Bosetti; N. Brandt; M. Caleno; Priscilla Canizares; A. Cavalleri; M. Cesa; M. Chmeissani; A. Conchillo; Giuseppe Congedo; I. Cristofolini; M. Cruise; Karsten Danzmann; F. De Marchi; M. Diaz-Aguilo; I. Diepholz; G. Dixon; R. Dolesi; N. Dunbar; J. Fauste; L. Ferraioli; V. Ferrone; Walter Fichter

In this paper, we describe the current status of the LISA Pathfinder mission, a precursor mission aimed at demonstrating key technologies for future space-based gravitational wave detectors, like LISA. Since much of the flight hardware has already been constructed and tested, we will show that performance measurements and analysis of these flight components lead to an expected performance of the LISA Pathfinder which is a significant improvement over the mission requirements, and which actually reaches the LISA requirements over the entire LISA Pathfinder measurement band.


Classical and Quantum Gravity | 2009

Data analysis for the LISA Technology Package

M. Hewitson; M. Armano; M. Benedetti; J. Bogenstahl; D. Bortoluzzi; Paolo Bosetti; N. Brandt; A. Cavalleri; G. Ciani; I. Cristofolini; M. Cruise; Karsten Danzmann; I. Diepholz; R. Dolesi; J. Fauste; L. Ferraioli; D. Fertin; Walter Fichter; Antonio Garcia; C. Garcia; A. Grynagier; F. Guzman; E. Fitzsimons; Gerhard Heinzel; D. Hollington; J. Hough; M. Hueller; D. Hoyland; O. Jennrich; B. Johlander

The LISA Technology Package (LTP) on board the LISA Pathfinder mission aims to demonstrate some key concepts for LISA which cannot be tested on ground. The mission consists of a series of preplanned experimental runs. The data analysis for each experiment must be designed in advance of the mission. During the mission, the analysis must be carried out promptly so that the results can be fed forward into subsequent experiments. As such a robust and flexible data analysis environment needs to be put in place. Since this software is used during mission operations and effects the mission timeline, it must be very robust and tested to a high degree. This paper presents the requirements, design and implementation of the data analysis environment (LTPDA) that will be used for analysing the data from LTP. The use of the analysis software to perform mock data challenges (MDC) is also discussed, and some highlights from the first MDC are presented.


Physics Letters B | 1995

Results from the first stage of a UK Galactic dark matter search using low background sodium iodide detectors

J. J. Quenby; T. J. Sumner; J.P. Li; A. Bewick; S.M. Grant; D. Shaul; N.J.T. Smith; W. G. Jones; Gavin Davies; C. C. Zammit; A. D. Caplin; R. A. Stradling; Tarig Ali; C.H. Lally; P.F. Smith; G.J. Homer; G. Arnison; J.D. Lewin; G. J. Alner; A. M. Cruise; M. J. van den Putte; N.J.C. Spooner; Jerome C. Barton; P. R. Blake; M.J. Lea; P. Stefanyi; John B. Saunders

Abstract Low-energy background spectra from 1.3 kg and 6.2 kg NaI(TI) crystal scintillators operating in the shielded Boulby underground facility were measured. Upper limits to the scattering interaction rates and cross-sections of Galactic dark matter in the form of Weakly Interacting Massive Particles (WIMPs) are calculated from these data. This work provides an improved limit for spin-dependent interactions for WIMP masses above 10 GeV.


Classical and Quantum Gravity | 2005

Evaluation of disturbances due to test mass charging for LISA

D. Shaul; H.M. Araújo; G. K. Rochester; T. J. Sumner; P. Wass

This paper concerns the effects of the build-up of electrical charge on the LISA test masses. Charge accumulates on the isolated test masses due to the bombardment of the spacecraft by galactic cosmic rays and solar particles. This will result in forces on the test masses, due to Coulomb and Lorentz interactions, which will disturb their geodesic motion. The three main disturbances associated with this charge are an increase in the test mass acceleration noise, coupling between the test mass and the spacecraft and the appearance of coherent Fourier components in the measurement bandwidth. These disturbances are estimated using the latest charging rate and noise predictions from GEANT4 for both the LISA mission and the technology demonstration mission, LISA Pathfinder, at different times in the solar cycle. The Coulomb disturbances are evaluated based on a detailed 3D, electrostatic, finite element model and submodels of the LTP sensor. These results are compared with those derived using the customary parallel plate approximation to calculate capacitances, and the accuracy of these approximations is assessed for typical parameter settings. The variation of the magnitude of charging disturbances as different parameters are changed, and the management of such disturbances are discussed.


Classical and Quantum Gravity | 2004

Description of charging/discharging processes of the LISA sensors

T. J. Sumner; H.M. Araújo; D. Davidge; A.S. Howard; Chris Lee; G. K. Rochester; D. Shaul; P. Wass

The next generation of gravitational experiments in space is likely to use completely isolated proof-masses. For example, LISA uses proof-masses as mirrors in interferometers for gravitational wave astronomy (Bender et al 1998 Pre-phase A report MPG-233 pp 1–191) and STEP uses proof-masses in Earth orbit for an equivalence principle test (Sumner et al 2003 at press). Nongravitational forces will act on these proof-masses if they become charged, through the action of cosmic rays and solar flare particles for example. This paper examines the consequences of proof-mass charging for LISA, and presents results from using GEANT4 to assess the charging processes. Finally, there is a brief discussion of a means of controlling the charge down to an acceptable level.

Collaboration


Dive into the D. Shaul's collaboration.

Top Co-Authors

Avatar

T. J. Sumner

Imperial College London

View shared research outputs
Top Co-Authors

Avatar

H.M. Araújo

Imperial College London

View shared research outputs
Top Co-Authors

Avatar

T. Mulligan

The Aerospace Corporation

View shared research outputs
Top Co-Authors

Avatar

P. Wass

Imperial College London

View shared research outputs
Top Co-Authors

Avatar

J. B. Blake

The Aerospace Corporation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Harlan E. Spence

University of New Hampshire

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge