Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where H.M. Araújo is active.

Publication


Featured researches published by H.M. Araújo.


IEEE Transactions on Nuclear Science | 2006

Geant4 developments and applications

J. Allison; K. Amako; J. Apostolakis; H.M. Araújo; P.A. Dubois; Makoto Asai; G. Barrand; R. Capra; Stephane Chauvie; R. Chytracek; G.A.P. Cirrone; Gene Cooperman; G. Cosmo; G. Cuttone; G.G. Daquino; M. Donszelmann; M. Dressel; G. Folger; F. Foppiano; J. Generowicz; V.M. Grichine; Susanna Guatelli; P. Gumplinger; A. Heikkinen; I. Hrivnacova; Alexander Howard; S. Incerti; Vladimir N. Ivanchenko; Thomas Johnson; F.W. Jones

Geant4 is a software toolkit for the simulation of the passage of particles through matter. It is used by a large number of experiments and projects in a variety of application domains, including high energy physics, astrophysics and space science, medical physics and radiation protection. Its functionality and modeling capabilities continue to be extended, while its performance is enhanced. An overview of recent developments in diverse areas of the toolkit is presented. These include performance optimization for complex setups; improvements for the propagation in fields; new options for event biasing; and additions and improvements in geometry, physics processes and interactive capabilities


Physics of the Dark Universe | 2015

Simplified models for dark matter searches at the LHC

J. Abdallah; H.M. Araújo; Alexandre Arbey; A. Ashkenazi; Alexander Belyaev; J. Berger; Celine Boehm; A. Boveia; A. J. Brennan; Jim J Brooke; O. L. Buchmueller; Matthew S. Buckley; Giorgio Busoni; Lorenzo Calibbi; S. Chauhan; Nadir Daci; Gavin Davies; Isabelle De Bruyn; Paul de Jong; Albert De Roeck; Kees de Vries; D. Del Re; Andrea De Simone; Andrea Di Simone; C. Doglioni; Matthew J. Dolan; Herbi K. Dreiner; John Ellis; Sarah Catherine Eno; E. Etzion

This document outlines a set of simplified models for dark matter and its interactions with Standard Model particles. It is intended to summarize the main characteristics that these simplified models have when applied to dark matter searches at the LHC, and to provide a number of useful expressions for reference. The list of models includes both s-channel and t-channel scenarios. For s-channel, spin-0 and spin-1 mediation is discussed, and also realizations where the Higgs particle provides a portal between the dark and visible sectors. The guiding principles underpinning the proposed simplified models are spelled out, and some suggestions for implementation are presented.


Physical Review D | 2009

Results from the first science run of the ZEPLIN-III dark matter search experiment

V. N. Lebedenko; H.M. Araújo; E. J. Barnes; A. Bewick; R. Cashmore; V. Chepel; A. Currie; D. Davidge; J. Dawson; T. Durkin; B. Edwards; C. Ghag; M. Horn; A.S. Howard; A. J. Hughes; W.G. Jones; M. Joshi; G. Kalmus; A.G. Kovalenko; A. Lindote; I. Liubarsky; M.I. Lopes; R. Lüscher; P. Majewski; A. St. J. Murphy; F. Neves; J. Pinto da Cunha; R. Preece; J. J. Quenby; P.R. Scovell

The ZEPLIN-III experiment in the Palmer Underground Laboratory at Boulby uses a 12 kg two-phase xenon time-projection chamber to search for the weakly interacting massive particles (WIMPs) that may account for the dark matter of our Galaxy. The detector measures both scintillation and ionization produced by radiation interacting in the liquid to differentiate between the nuclear recoils expected from WIMPs and the electron-recoil background signals down to {approx}10 keV nuclear-recoil energy. An analysis of 847 kg{center_dot}days of data acquired between February 27, 2008, and May 20, 2008, has excluded a WIMP-nucleon elastic scattering spin-independent cross section above 8.1x10{sup -8} pb at 60 GeVc{sup -2} with a 90% confidence limit. It has also demonstrated that the two-phase xenon technique is capable of better discrimination between electron and nuclear recoils at low-energy than previously achieved by other xenon-based experiments.


Journal of Instrumentation | 2013

Liquid noble gas detectors for low energy particle physics

V. Chepel; H.M. Araújo

We review the current status of liquid noble gas radiation detectors with energy threshold in the keV range, which are of interest for direct dark matter searches, measurement of coherent neutrino scattering and other low energy particle physics experiments. Emphasis is given to the operation principles and the most important instrumentation aspects of these detectors, principally of those operated in the double-phase mode. Recent technological advances and relevant developments in photon detection and charge readout are discussed in the context of their applicability to those experiments.


Physics Letters B | 2012

WIMP-nucleon cross-section results from the second science run of ZEPLIN-III

D. Yu. Akimov; H.M. Araújo; E. J. Barnes; V. A. Belov; A. Bewick; A. Burenkov; V. Chepel; A. Currie; L. DeViveiros; B. Edwards; C. Ghag; A. Hollingsworth; M. Horn; W.G. Jones; G. Kalmus; A. S. Kobyakin; A. G. Kovalenko; V. N. Lebedenko; A. Lindote; M.I. Lopes; R. Lüscher; P. Majewski; A. St. J. Murphy; F. Neves; S. M. Paling; J. Pinto da Cunha; R. Preece; J. J. Quenby; L. Reichhart; P.R. Scovell

Abstract We report experimental upper limits on WIMP-nucleon elastic scattering cross sections from the second science run of ZEPLIN-III at the Boulby Underground Laboratory. A raw fiducial exposure of 1344 kg⋅days was accrued over 319 days of continuous operation between June 2010 and May 2011. A total of eight events was observed in the signal acceptance region in the nuclear recoil energy range 7–29 keV, which is compatible with background expectations. This allows the exclusion of the scalar cross-section above 4.8 × 10 − 8 pb near 50 GeV / c 2 WIMP mass with 90% confidence. Combined with data from the first run, this result improves to 3.9 × 10 − 8 pb . The corresponding WIMP-neutron spin-dependent cross-section limit is 8.0 × 10 − 3 pb . The ZEPLIN programme reaches thus its conclusion at Boulby, having deployed and exploited successfully three liquid xenon experiments of increasing reach.


Astroparticle Physics | 2007

The ZEPLIN-III dark matter detector: Instrument design, manufacture and commissioning

D. Yu. Akimov; G. J. Alner; H.M. Araújo; A. Bewick; C. Bungau; A. A. Burenkov; M.J. Carson; H. Chagani; V. Chepel; D. Cline; D. Davidge; E. Daw; J. Dawson; T. Durkin; B. Edwards; T. Gamble; C. Chag; R. Hollingworth; A.S. Howard; W.G. Jones; M. Joshi; K. Mavrokoridis; E.V. Korolkova; A. G. Kovalenko; V.A. Kudryavtsev; I. S. Kuznetsov; T.B. Lawson; V. N. Lebedenko; J.D. Lewin; P. K. Lightfoot

We present details of the technical design, manufacture and testing of the ZEPLIN-III dark matter experiment. ZEPLIN-III is a two-phase xenon detector which measures both the scintillation light and the ionisation charge generated in the liquid by interacting particles and radiation. The instrument design is driven by both the physics requirements and by the technology requirements surrounding the use of liquid xenon. These include considerations of key performance parameters, such as the efficiency of scintillation light collection, restrictions placed on the use of materials to control the inherent radioactivity levels, attainment of high vacuum levels and chemical contamination control. The successful solution has involved a number of novel design and manufacturing features which will be of specific use to future generations of direct dark matter search experiments as they struggle with similar and progressively more demanding requirements.


Physics Letters B | 2005

Limits on WIMP cross-sections from the NAIAD experiment at the Boulby Underground Laboratory

G. J. Alner; H.M. Araújo; G. Arnison; J. C. Barton; A. Bewick; C. Bungau; B. Camanzi; M.J. Carson; D. Davidge; Gavin Davies; J.C. Davies; E. Daw; J. Dawson; Christopher D. P. Duffy; T. Durkin; T. Gamble; S.P. Hart; R. Hollingworth; G.J. Homer; A.S. Howard; I. Ivaniouchenkov; W.G. Jones; M. Joshi; J. Kirkpatrick; V.A. Kudryavtsev; T.B. Lawson; V. N. Lebedenko; M J Lehner; J.D. Lewin; P. K. Lightfoot

The NAIAD experiment (NaI Advanced Detector) for WIMP dark matter searches at the Boulby Underground Laboratory (North Yorkshire, UK) ran from 2000 until 2003. A total of 44.9 kg x years of data collected with 2 encapsulated and 4 unencapsulated NaI(Tl) crystals with high light yield were included in the analysis. We present final results of this analysis carried out using pulse shape discrimination. No signal associated with nuclear recoils from WIMP interactions was observed in any run with any crystal. This allowed us to set upper limits on the WIMP-nucleon spin-independent and WIMP-proton spin-dependent cross-sections. The NAIAD experiment has so far imposed the most stringent constraints on the spin-dependent WIMP-proton cross-section.


Physics of the Dark Universe | 2015

Interplay and Characterization of Dark Matter Searches at Colliders and in Direct Detection Experiments

S. Malik; Christopher McCabe; H.M. Araújo; Alexander Belyaev; Céline Bœhm; Jim J Brooke; O. L. Buchmueller; Gavin Davies; Albert De Roeck; Kees de Vries; Matthew J. Dolan; John Ellis; Malcolm Fairbairn; Henning Flaecher; L. Gouskos; Valentin V. Khoze; Greg Landsberg; Dave M Newbold; Michele Papucci; T. J. Sumner; Marc Thomas; Steven Worm

In this White Paper we present and discuss a concrete proposal for the consistent interpretation of Dark Matter searches at colliders and in direct detection experiments. Based on a specific implementation of simplified models of vector and axial-vector mediator exchanges, this proposal demonstrates how the two search strategies can be compared on an equal footing.


Physical Review Letters | 2009

Limits on the Spin-Dependent WIMP-Nucleon Cross Sections from the First Science Run of the ZEPLIN-III Experiment

V. N. Lebedenko; H.M. Araújo; E. J. Barnes; A. Bewick; R. Cashmore; V. Chepel; A. Currie; D. Davidge; J. Dawson; T. Durkin; B. Edwards; C. Ghag; M. Horn; A.S. Howard; A. J. Hughes; W.G. Jones; M. Joshi; G. Kalmus; A.G. Kovalenko; A. Lindote; I. Liubarsky; M.I. Lopes; R. Lüscher; K. Lyons; P. Majewski; A. St. J. Murphy; F. Neves; J. Pinto da Cunha; R. Preece; J. J. Quenby

We present new experimental constraints on the WIMP-nucleon spin-dependent elastic cross sections using data from the first science run of ZEPLIN-III, a two-phase xenon experiment searching for galactic dark matter weakly interacting massive particles based at the Boulby mine. Analysis of approximately 450 kg x days fiducial exposure allow us to place a 90%-confidence upper limit on the pure WIMP-neutron cross section of sigma(n)=1.9x10(-2) pb at 55 GeV/c(2) WIMP mass. Recent calculations of the nuclear spin structure based on the Bonn charge-dependent nucleon-nucleon potential were used for the odd-neutron isotopes 129Xe and 131Xe. These indicate that the sensitivity of xenon targets to the spin-dependent WIMP-proton interaction could be much lower than implied by previous calculations, whereas the WIMP-neutron sensitivity is impaired only by a factor of approximately 2.


Physics Letters B | 2011

Nuclear recoil scintillation and ionisation yields in liquid xenon from ZEPLIN-III data

M. Horn; V. A. Belov; D. Yu. Akimov; H.M. Araújo; E. J. Barnes; A. Burenkov; V. Chepel; A. Currie; B. Edwards; C. Ghag; A. Hollingsworth; G. Kalmus; A. S. Kobyakin; A. G. Kovalenko; V. N. Lebedenko; A. Lindote; M.I. Lopes; R. Lüscher; P. Majewski; A. St. J. Murphy; F. Neves; S. M. Paling; J. Pinto da Cunha; R. Preece; J. J. Quenby; L. Reichhart; P.R. Scovell; Catarina Silva; V. Solovov; N.J.T. Smith

Scintillation and ionisation yields for nuclear recoils in liquid xenon above 10 keVnr (nuclear recoil energy) are deduced from data acquired using broadband Am–Be neutron sources. The nuclear recoil data from several exposures to two sources were compared to detailed simulations. Energy-dependent scintillation and ionisation yields giving acceptable fits to the data were derived. Efficiency and resolution effects are treated using a light collection Monte Carlo, measured photomultiplier response profiles and hardware trigger studies. A gradual fall in scintillation yield below ∼40 keVnr is found, together with a rising ionisation yield; both are in agreement with the latest independent measurements. The analysis method is applied to the most recent ZEPLIN-III data, acquired with a significantly upgraded detector and a precision-calibrated Am–Be source, as well as to the earlier data from the first run in 2008. A new method for deriving the recoil scintillation yield, which includes sub-threshold S1 events, is also presented which confirms the main analysis.

Collaboration


Dive into the H.M. Araújo's collaboration.

Top Co-Authors

Avatar

C. Ghag

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Currie

Imperial College London

View shared research outputs
Top Co-Authors

Avatar

T. J. Sumner

Imperial College London

View shared research outputs
Top Co-Authors

Avatar

A. Bewick

Imperial College London

View shared research outputs
Top Co-Authors

Avatar

A.S. Howard

Imperial College London

View shared research outputs
Top Co-Authors

Avatar

D. Davidge

Imperial College London

View shared research outputs
Top Co-Authors

Avatar

J. Dawson

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

W.G. Jones

Imperial College London

View shared research outputs
Researchain Logo
Decentralizing Knowledge