D.V. Morgan
Los Alamos National Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by D.V. Morgan.
IEEE Transactions on Plasma Science | 2002
R.E. Reinovsky; W. Anderson; W.L. Atchison; Carl Ekdahl; Rickey J. Faehl; Irvin R. Lindemuth; D.V. Morgan; Michael S. Murillo; J. Stokes; J.S. Shlachter
Magnetically imploded cylindrical metal shells (z-pinch liners) are attractive drivers for experiments exploring hydrodynamics and properties of materials at extreme conditions. As in all z-pinches, the outer surface of a liner is unstable to magneto Rayleigh-Taylor (RT) modes during acceleration, and large-scale distortion arising from RT modes could make such liners unuseable. On the other hand, material strength in the liner should, from first principles, reduce the growth rate of RT modes, and material strength can render some combinations of wavelength and amplitude analytically stable. A series of experiments has been conducted in which high-conductivity, soft, cylindrical aluminum liners were accelerated with 6-MA, 7-/spl mu/s rise-time driving currents. Small perturbations were machined into the outer surface of the liner and perturbation growth monitored. Two-dimensional magneto-hydrodynamic (2-D-MHD) calculations of the growth of the initial perturbations were in good agreement with experimentally observed perturbation growth through the entire course of the implosions. In general, for high-conductivity and soft materials, theory and simulation adequately predicted the behavior of magneto-RT modes in liners where elastic-plastic behavior applies. This is the first direct verification of the growth of magneto-RT in solids with strength known to the authors.
Review of Scientific Instruments | 2008
Ming Wu; Craig Kruschwitz; D.V. Morgan; Jiaming G. Morgan
X-ray detectors based on straight-channel microchannel plates (MCPs) are a powerful diagnostic tool for two-dimensional, time-resolved imaging and time-resolved x-ray spectroscopy in the fields of laser-driven inertial confinement fusion and fast Z-pinch experiments. Understanding the behavior of microchannel plates as used in such detectors is critical to understanding the data obtained. The subject of this paper is a Monte Carlo computer code we have developed to simulate the electron cascade in a MCP under a static applied voltage. Also included in the simulation is elastic reflection of low-energy electrons from the channel wall, which is important at lower voltages. When model results were compared to measured MCP sensitivities, good agreement was found. Spatial resolution simulations of MCP-based detectors were also presented and found to agree with experimental measurements.
ieee international pulsed power conference | 1999
J.H. Goforth; W.A. Anderson; E.V. Armijo; W.L. Atchison; J.J. Bartos; D.A. Clark; R.D. Day; W.J. Deninger; Rickey J. Faehl; C.M. Fowler; F. Garcia; O.F. Garcia; D.H. Herrera; T.J. Herrera; R. Keinigs; J.C. King; J.R. Lindemuth; E.A. Lopez; E.C. Martinez; D. Martinez; J.A. McGuire; D.V. Morgan; H. Oona; D. Oro; J.V. Parker; R.B. Randolph; R.E. Reinovsky; George Rodriguez; J. Stokes; F.C. Sena
The authors are developing the RANCHERO high explosive pulsed power (HEPP) system to power cylindrically imploding solid-density liners for hydrodynamics experiments. Their near-term goal is to conduct experiments in the regime pertinent to the Atlas capacitor bank. That is, they will attempt to implode liners of /spl sim/50 g mass at velocities approaching 15 km/sec. The basic building block of the HEPP system is a coaxial generator with a 304.8 mm diameter stator, and an initial armature diameter of 152 mm. The armature is expanded by a high explosive (HE) charge detonated simultaneously along its axis. The authors have reported a variety of experiments conducted with generator modules 43 cm long and have presented an initial design for hydrodynamic liner experiments. In this paper, they give a synopsis of their first system test, and a status report on the development of a generator module that is 1.4 m long.
ieee international pulsed power conference | 1997
A.W. Obst; D. Fulton; N.S.P. King; D.V. Morgan; D. Oro; D. Platts; D.S. Sorenson; M. Stelts
Pulsed power driven cylindrical shock physics experiments are being performed at the PEGASUS facility at Los Alamos National Laboratory. A time dependent, axial X-ray imaging capability forms a subset of the measurements to quantify material behavior during shock propagation. 20 ns pulsed W target X-ray sources with about 10 mR at 1 m form the backlighter. Inorganic scintillators generate time dependent, visible images, which are relayed to a shuttered, microchannel plate intensifier imaging system coupled to electronic video readouts. The dynamic range, sensitivity, scene contrast, and system spatial resolution are optimized to specific experiments via optimization of fluor response to both X-ray energy and light output time response. In addition, a series of calibration data are taken to permit characterizing density information through postevent image processing. This dataset includes flat field and step wedge images. The flat field is particularly important due to the relatively large spatial variation in the X-ray dose resulting from the close proximity (60 cm) of the source to the imager.
Review of Scientific Instruments | 2008
D.V. Morgan; Don Macy; G. D. Stevens
A new, fast, single-pulse x-ray diffraction (XRD) diagnostic for determining phase transitions in shocked polycrystalline materials has been developed. The diagnostic consists of a 37-stage Marx bank high-voltage pulse generator coupled to a needle-and-washer electron beam diode via coaxial cable, producing line and bremsstrahlung x-ray emission in a 35 ns pulse. The characteristic K(alpha) lines from the selected anodes of silver and molybdenum are used to produce the diffraction patterns, with thin foil filters employed to remove the characteristic K(beta) line emission. The x-ray beam passes through a pinhole collimator and is incident on the sample with an approximately 3 x 6 mm(2) spot and 1 degrees full width half maximum angular divergence in a Bragg-reflecting geometry. For the experiments described in this report, the angle between the incident beam and the sample surface was 8.5 degrees . A Debye-Scherrer diffraction image was produced on a phosphor located 76 mm from the polycrystalline sample surface. The phosphor image was coupled to a charge-coupled device camera through a coherent fiber-optic bundle. Dynamic single-pulse XRD experiments were conducted with thin foil samples of tin, shock loaded with a 1 mm vitreous carbon back window. Detasheet high explosive with a 2-mm-thick aluminum buffer was used to shock the sample. Analysis of the dynamic shock-loaded tin XRD images revealed a phase transformation of the tin beta phase into an amorphous or liquid state. Identical experiments with shock-loaded aluminum indicated compression of the face-centered-cubic aluminum lattice with no phase transformation.
ieee international pulsed power conference | 1997
J.S. Shlachter; P.J. Adams; W.L. Atchison; R.R. Bartsch; J.F. Benage; J.C. Cochrane; W.L. Coulter; C.A. Ekdahl; R.J. Faehl; R.D. Fulton; Joyce Ann Guzik; D. Holtkamp; Michael E. Jones; Rhon K. Keinigs; N.S.P. King; George A. Kyrala; H. Lee; Irvin R. Lindemuth; D.V. Morgan; R.W. Moses; A.W. Obst; H. Oona; D. Oro; W.M. Parsons; D. Platts; R.E. Reinovsky; George Rodriguez; D.W. Scudder; Maurice G. Sheppard; D.S. Sorenson
Atlas will be a high-energy (36 MJ stored), high-power (/spl sim/10 TW) pulsed power driver for high energy-density experiments, with an emphasis on hydrodynamics. Scheduled for completion in late 1999, Atlas is designed to produce currents in the 40-50 MA range with a quarter-cycle time of 4-5 /spl mu/s. It will drive implosions of heavy liners (typically 50 g) with implosion velocities exceeding 20 mm//spl mu/s. Under these conditions, very high pressures and magnetic fields are produced. Shock pressures in the 50 Mbar range and pressures exceeding 10 Mbar in an adiabatic compression will be possible. By performing flux compression of a seed field, axial magnetic fields in the 2000 T range may be achieved. A variety of concepts have been identified for the first experimental campaigns on Atlas. Experimental configurations, associated physics issues, and diagnostic strategies are all under investigation as the design of the Atlas facility proceeds. Near-term proof-of-principle experiments employing the smaller Pegasus II capacitor bank have been identified, and several of these experiments have now been performed. This paper discusses a number of recent Pegasus II experiments and identifies several areas of research presently planned on Atlas.
international conference on plasma science | 2001
B.G. Anderson; W. Anderson; W.L. Atchison; R.R. Bartsch; W. Brostie; J.C. Cochrane; C.A. Ekdahl; R.J. Faehl; Irvin R. Lindemuth; D.V. Morgan; H. Oona; R.E. Reinovsky; J. Stokes; L.C. Tabaka; S.M. Younger; Anatoly M. Buyko; S.F. Garanin; V.N. Mokhov; V.B. Yakubov; A.A. Petrukhin; A.I. Kuzyayev; V.K. Chernyshev
A liner implosion experiment was conducted on facility Pegasus-2, in which two perturbation type growth was compared. On one half (through height) of the cylindrical liner sinusoidal azimuthally symmetric perturbations were produced. On the other liner half the perturbations were of the same wavelength and the same amplitude, but the angle between the wave vector and the cylinder axis was 45/spl deg/ (screw perturbations). The experimental radiographs show that there is essentially no screw perturbation growth, while the azimuthally symmetric perturbations grow many-fold. This result agrees with the theoretical predictions.
ieee international pulsed power conference | 2007
D.V. Morgan; Don Macy; Michael J. Madlener; Jiaming G. Morgan
A new, fast, single-pulse diagnostic for determining phase transitions and measuring the bulk temperature of polycrystalline metal objects has been developed. The diagnostic consists of a 37-stage Marx bank with a cable-coupled X-ray diode that produces a 35-ns pulse of mostly 0.71-Å monochromatic X rays and a P-43 fluor coupled to a cooled, charge-coupled device camera by a coherent fiber-optic bundle for detection of scattered X rays. The X-ray beam is collimated to a 1° divergence in the scattering plane with the combination of a 1.5-mm tungsten pinhole and a 1.5-mm-diameter molybdenum anode. X rays are produced by a high-energy electron beam transiting inward from the cathode to the anode in a needle-and-washer configuration. The anode’s characteristic K-α X-ray emission lines are utilized for this diffraction system. The X-ray anode is heavily shielded in all directions other than the collimated beam. The X-ray diode has a sealed reentrant system, allowing X rays to be produced inside a vacuum containment vessel, close to the sample under study.
ieee international pulsed power conference | 1997
D.V. Morgan; D. Platts; J.S. Shlachter; Donald L Martinez; Bernard Carpenter
Three liner stability experiments were performed at the Pegasus II pulsed power facility to determine the asymmetric variations in the material density of a cylindrical liner during an electro-magnetically driven implosion. The initial campaign consisted of three experiments, designated LS-1, LS-2, and LS-3. LS-1 and LS-2 were driven with a peak current of approximately 4.2 MA, whereas the peak current for LS-3 was approximately 6.4 MA. All three liners initially were 0.4 mm wall aluminum cylinders with a mean radius of 2.38 cm and a height of 2.0 cm. The inner surface of each liner was coated with a thin (18-23 /spl mu/m) layer of gold to aid in the determination of the position of the inner surface of the liner. Radial radiography was used to characterize the z-dependent and /spl theta/-dependent instabilities that were observed as the liner contracted.
Powder Diffraction | 2010
D.V. Morgan; Mike Grover; Don Macy; Mike Madlener; G. D. Stevens; W. D. Turley
A single-pulse X-ray diffraction (XRD) diagnostic has been developed for the investigation of shocked material properties on a very short time scale. The diagnostic, which consists of a 37-stage Marx bank high-voltage pulse generator coupled to a needle-and-washer electron beam diode via coaxial cable, produces line-and-bremsstrahlung X-ray emission in a 40 ns pulse. The molybdenum anode produces 0.71 A characteristic K lines used for diffraction. The X-ray beam passes through a pinhole collimator and is incident on the sample with an approximately 2 mm×5 mm spot and 1° full width at half maximum angular divergence. Coherent scattering from the sample produces a Debye-Scherrer diffraction pattern on an image plate located at 75 mm from the polycrystalline sample surface. An experimental study of the polycrystalline structures of zirconium and tin under high-pressure shock loading has been conducted with single-pulse XRD. The experimental targets were 0.1-mm-thick foils of zirconium and tin using 0.4-mm-thick vitreous carbon back windows for shock loading, and the shocks were produced by either Detasheet or PBX-9501 high explosives buffered by 1-mm-thick 6061-T6 aluminum. The diffraction patterns from both shocked zirconium and tin indicated a phase transition into a polymorphic mix of amorphous and new solid phases.