D. W. Cheng
Lawrence Berkeley National Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by D. W. Cheng.
IEEE Transactions on Applied Superconductivity | 2009
H. Felice; Giorgio Ambrosio; Michael Anerella; R. Bossert; S. Caspi; D. W. Cheng; D.R. Dietderich; P. Ferracin; A. Ghosh; R. Hafalia; C. R. Hannaford; Vadim V. Kashikhin; Jesse Schmalze; S. Prestemon; GianLuca Sabbi; P. Wanderer; Alexander V. Zlobin
In support of the Large Hadron Collider luminosity upgrade, a large bore (120 mm) Nb3Sn quadrupole with 15 T peak coil field is being developed within the framework of the US LHC Accelerator Research Program (LARP). The 2-layer design with a 15 mm wide cable is aimed at pre-stress control, alignment and field quality while exploring the magnet performance limits in terms of gradient, forces and stresses. In addition, HQ will determine the magnetic, mechanical, and thermal margins of Nb3Sn technology with respect to the requirements of the luminosity upgrade at the LHC.
IEEE Transactions on Applied Superconductivity | 2008
A. Godeke; D. W. Cheng; D.R. Dietderich; C. D. English; H. Felice; C. R. Hannaford; S. Prestemon; G. Sabbi; R.M. Scanlan; Y. Hikichi; J. Nishioka; T. Hasegawa
We report on the progress in our R&D program, targeted to develop the technology for the application of (Bi-2212) in accelerator magnets. The program uses subscale coils, wound from insulated cables, to study suitable materials, heat treatment homogeneity, stability, and effects of magnetic field and thermal and electro-magnetic loads. We have addressed material and reaction related issues and report on the fabrication, heat treatment, and analysis of subscale Bi-2212 coils. Such coils can carry a current on the order of 5000 A and generate, in various support structures, magnetic fields from 2.6 to 9.9 T. Successful coils are therefore targeted towards a hybrid -HTS magnet which will demonstrate the feasibility of Bi-2212 for accelerator magnets, and open a new magnetic field realm, beyond what is achievable with .
IEEE Transactions on Applied Superconductivity | 2010
S. Caspi; G. Ambrosio; M. Anerella; E. Barzi; R. Bossert; D. W. Cheng; D.R. Dietderich; H. Felice; P. Ferracin; A. Ghosh; R. Hafalia; R. Hannaford; V.V. Kashikhin; D. Pasholk; G. Sabbi; J. Schmalzle; P. Wanderer; A.V. Zlobin
Future upgrades to machines like the Large Hadron Collider (LHC) at CERN will push accelerator magnets beyond 10 T forcing the replacement of NbTi superconductors with advanced superconductors such as Nb3Sn. In support of the LHC Phase-II upgrade, the US LHC Accelerator Research Program (LARP) is developing a large bore (120 mm) Nb3Sn Interaction Region (IR) quadrupole (HQ) capable of reaching 15 T at its conductor limit and gradients of 199 T/m at 4.4 K and 219 T/m at 1.9 K. The 1 m long, two-layer magnet, addresses coil alignment and accelerator quality features while exploring the magnet performance limits in terms of gradient, stress and structure. This paper summarizes and reports on the design, mechanical structure, coil windings, reaction and impregnation processes.
IEEE Transactions on Applied Superconductivity | 2010
P. Ferracin; B. Bingham; S. Caspi; D. W. Cheng; D.R. Dietderich; H. Felice; A.R. Hafalia; C. R. Hannaford; J. Joseph; A.F. Lietzke; J. Lizarazo; G. Sabbi; X. Wang
The 1 m long Nb3Sn dipole magnet HD2, fabricated and tested at Lawrence Berkeley National Laboratory, represents a step towards the development of block-type accelerator quality magnets operating in the range of 13-15 T. The magnet design features two coil modules composed of two layers wound around a titanium-alloy pole. The layer 1 pole includes a round cutout to provide room for a bore tube with a clear aperture of 36 mm. After a first series of tests where HD2 reached a maximum bore field of 13.8 T, corresponding to an estimated peak field on the conductor of 14.5 T, the magnet was disassembled and reloaded without the bore tube and with a clear aperture increased to 43 mm. We describe in this paper the magnet training observed in two consecutive tests after the removal of the bore tube, with a comparison of the quench performance with respect to the previous tests. An analysis of the voltage signals recorded before and after training quenches is then presented and discussed, and the results of coil visual inspections reported.
IEEE Transactions on Applied Superconductivity | 2012
H. Felice; G. Ambrosio; M. Anerella; D. Bocian; R. Bossert; S. Caspi; B. Collins; D. W. Cheng; G. Chlachidze; D.R. Dietderich; P. Ferracin; A. Godeke; A. Ghosh; A.R. Hafalia; J. Joseph; J. Krishnan; M. Marchevsky; G. Sabbi; J. Schmalzle; P. Wanderer; X. Wang; A.V. Zlobin
In the past two years the US LARP program carried out five tests on a quadrupole magnet aimed at the high luminosity upgrade of Large Hadron Collider (HiLumi-LHC). The 1-meter long, 120 mm bore IR quadrupole magnet (HQ) with a short sample gradient of 219 T/m at 1.9 K and a conductor peak field of 15 T is part of the US LHC Accelerator Research Program (LARP). In a series of tests, carried out at 4.4 K, the magnet reached a maximum “short-sample” performance of 86%. The tests exposed several shortcomings that are now being addressed in a Research & Development program. This paper summarizes the magnet test results, reveals findings, R&D actions and future improvements.
IEEE Transactions on Applied Superconductivity | 2014
G. Chlachidze; Giorgio Ambrosio; Michael Anerella; F. Borgnolutti; R. Bossert; S. Caspi; D. W. Cheng; D.R. Dietderich; H. Felice; P. Ferracin; A. Ghosh; A. Godeke; A.R. Hafalia; M. Marchevsky; D. Orris; Pallab Kanti Roy; G. Sabbi; T. Salmi; J. Schmalzle; C. Sylvester; M. Tartaglia; J.C. Tompkins; P. Wanderer; X. Wang; A.V. Zlobin
In preparation for the high luminosity upgrade of the Large Hadron Collider (LHC), the LHC Accelerator Research Program (LARP) is developing a new generation of large aperture high-field quadrupoles based on Nb3Sn technology. One meter long and 120 mm diameter HQ quadrupoles are currently produced as a step toward the eventual aperture of 150 mm. Tests of the first series of HQ coils revealed the necessity for further optimization of the coil design and fabrication process. A new model (HQ02) has been fabricated with several design modifications, including a reduction of the cable size and an improved insulation scheme. Coils in this magnet are made of a cored cable using 0.778 mm diameter Nb3Sn strands of RRP 108/127 subelement design. The HQ02 magnet has been fabricated at LBNL and BNL, and then tested at Fermilab. This paper summarizes the performance of HQ02 at 4.5 K and 1.9 K temperatures.
IEEE Transactions on Applied Superconductivity | 2009
P. Ferracin; Giorgio Ambrosio; Michael Anerella; B. Bingham; R. Bossert; S. Caspi; D. W. Cheng; H. Felice; A.R. Hafalia; C. R. Hannaford; F. Nobrega; S. Prestemon; GianLuca Sabbi; J. Schmalzle; Frederic Trillaud; P. Wanderer; Alexander V. Zlobin
The 3.7 m long quadrupole magnet LQS01 represents a major step of the US LHC Accelerator Research Program (LARP) towards the development of long Nb3Sn accelerator quadrupole magnets for a LHC Luminosity upgrade. The magnet support structure is a scale up of the 1 m long Technology Quadrupole TQS design with some modifications suggested by TQS model test results. It includes an aluminum shell pre-tensioned over iron yokes using pressurized bladders and locking keys (bladder and key technology). The axial support is provided by two stainless steel end plates compressed against the coil ends by four stainless steel rods. The structure, instrumented with strain gauges, has been fabricated and assembled around four aluminum ldquodummy coilsrdquo to determine pre-load homogeneity and mechanical characteristics during cool-down. After presenting the main magnetic and mechanical parameters of LQS01, we report in this paper on the design, assembly, and test of the support structure, with a comparison between strain gauges data and 3D finite element model results.
IEEE Transactions on Applied Superconductivity | 2016
P. Ferracin; G. Ambrosio; M. Anerella; A. Ballarino; H. Bajas; M. Bajko; B. Bordini; R. Bossert; D. W. Cheng; D.R. Dietderich; G. Chlachidze; L D Cooley; H. Felice; A. Ghosh; R. Hafalia; E F Holik; S. Izquierdo Bermudez; P. Fessia; Philippe Grosclaude; Michael Guinchard; M. Juchno; S. Krave; Friedrich Lackner; M. Marchevsky; Vittorio Marinozzi; F. Nobrega; L. Oberli; Heng Pan; Jorge Pérez; H. Prin
The High Luminosity (HiLumi) Large Hadron Collider (LHC) project has, as the main objective, to increase the LHC peak luminosity by a factor five and the integrated luminosity by a factor ten. This goal will be achieved mainly with a new interaction region layout, which will allow a stronger focusing of the colliding beams. The target will be to reduce the beam size in the interaction points by a factor of two, which requires doubling the aperture of the low-β (or inner triplet) quadrupole magnets. The use of Nb3Sn superconducting material and, as a result, the possibility of operating at magnetic field levels in the windings higher than 11 T will limit the increase in length of these quadrupoles, called MQXF, to acceptable levels. After the initial design phase, where the key parameters were chosen and the magnets conceptual design finalized, the MQXF project, a joint effort between the U.S. LHC Accelerator Research Program and the Conseil Européen pour la Recherche Nucléaire (CERN), has now entered the construction and test phase of the short models. Concurrently, the preparation for the development of the full-length prototypes has been initiated. This paper will provide an overview of the project status, describing and reporting on the performance of the superconducting material, the lessons learnt during the fabrication of superconducting coils and support structure, and the fine tuning of the magnet design in view of the start of the prototyping phase.
IEEE Transactions on Applied Superconductivity | 2014
S. Caspi; F. Borgnolutti; Lucas Brouwer; D. W. Cheng; D.R. Dietderich; H. Felice; A. Godeke; R. Hafalia; M. Martchevskii; S. Prestemon; E. Rochepault; C. Swenson; X. Wang
Canted-Cosine-Theta (CCT) magnet is an accelerator magnet that superposes fields of nested and tilted solenoids that are oppositely canted. The current distribution of any canted layer generates a pure harmonic field as well as a solenoid field that can be cancelled with a similar but oppositely canted layer. The concept places windings within mandrels ribs and spars that simultaneously intercept and guide Lorentz forces of each turn to prevent stress accumulation. With respect to other designs, the need for pre-stress in this concept is reduced by an order of magnitude making it highly compatible with the use of strain sensitive superconductors such as Nb3Sn or HTS. Intercepting large Lorentz forces is of particular interest in magnets with large bores and high field accelerator magnets like the one foreseen in the future high energy upgrade of the LHC. This paper describes the CCT concept and reports on the construction of CCT1 a “proof of principle” dipole.
IEEE Transactions on Applied Superconductivity | 2011
S. Caspi; G. Ambrosio; M. Anerella; E. Barzi; B. Bingham; R. Bossert; D. W. Cheng; G. Chlachidze; D.R. Dietderich; H. Felice; P. Ferracin; A. Ghosh; A.R. Hafalia; C. R. Hannaford; J. Joseph; V.V. Kashikhin; G. Sabbi; J. Schmalzle; P. Wanderer; W. Xiaorong; A.V. Zlobin
In support of the luminosity upgrade of the Large Hadron Collider (LHC), the US LHC Accelerator Research Program (LARP) has been developing a 1-meter long, 120 mm bore Nb3Sn IR quadrupole magnet (HQ). With a short sample gradient of 219 T/m at 1.9 K and a conductor peak field of 15 T, the magnet will operate under higher forces and stored-energy levels than that of any previous LARP magnet models. In addition, HQ has been designed to incorporate accelerator quality features such as precise coil alignment and adequate cooling. The first 6 coils (out of the 8 fabricated so far) have been assembled and used in two separate tests-HQ01a and HQ01b. This paper presents design parameters, summary of the assemblies, the mechanical behavior as well as the performance of HQ01a and HQ01b.