Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where D. Williams Parsons is active.

Publication


Featured researches published by D. Williams Parsons.


Science | 2008

An Integrated Genomic Analysis of Human Glioblastoma Multiforme

D. Williams Parsons; Siân Jones; Xiaosong Zhang; Jimmy Lin; Rebecca J. Leary; Philipp Angenendt; Parminder Mankoo; Hannah Carter; I-Mei Siu; Gary L. Gallia; Alessandro Olivi; Roger E. McLendon; B. Ahmed Rasheed; Stephen T. Keir; Tatiana Nikolskaya; Yuri Nikolsky; Dana Busam; Hanna Tekleab; Luis A. Diaz; James Hartigan; Doug Smith; Robert L. Strausberg; Suely Kazue Nagahashi Marie; Sueli Mieko Oba Shinjo; Hai Yan; Gregory J. Riggins; Darell D. Bigner; Rachel Karchin; Nick Papadopoulos; Giovanni Parmigiani

Glioblastoma multiforme (GBM) is the most common and lethal type of brain cancer. To identify the genetic alterations in GBMs, we sequenced 20,661 protein coding genes, determined the presence of amplifications and deletions using high-density oligonucleotide arrays, and performed gene expression analyses using next-generation sequencing technologies in 22 human tumor samples. This comprehensive analysis led to the discovery of a variety of genes that were not known to be altered in GBMs. Most notably, we found recurrent mutations in the active site of isocitrate dehydrogenase 1 (IDH1) in 12% of GBM patients. Mutations in IDH1 occurred in a large fraction of young patients and in most patients with secondary GBMs and were associated with an increase in overall survival. These studies demonstrate the value of unbiased genomic analyses in the characterization of human brain cancer and identify a potentially useful genetic alteration for the classification and targeted therapy of GBMs.


Science | 2006

The Consensus Coding Sequences of Human Breast and Colorectal Cancers

Tobias Sjöblom; Sian Jones; D. Williams Parsons; Laura D. Wood; Jimmy Lin; Thomas D. Barber; Diana Mandelker; Bert Vogelstein; Kenneth W. Kinzler; Victor E. Velculesu

The elucidation of the human genome sequence has made it possible to identify genetic alterations in cancers in unprecedented detail. To begin a systematic analysis of such alterations, we determined the sequence of well-annotated human protein-coding genes in two common tumor types. Analysis of 13,023 genes in 11 breast and 11 colorectal cancers revealed that individual tumors accumulate an average of ∼90 mutant genes but that only a subset of these contribute to the neoplastic process. Using stringent criteria to delineate this subset, we identified 189 genes (average of 11 per tumor) that were mutated at significant frequency. The vast majority of these genes were not known to be genetically altered in tumors and are predicted to affect a wide range of cellular functions, including transcription, adhesion, and invasion. These data define the genetic landscape of two human cancer types, provide new targets for diagnostic and therapeutic intervention, and open fertile avenues for basic research in tumor biology.


The New England Journal of Medicine | 2009

IDH1 and IDH2 Mutations in Gliomas

Hai Yan; D. Williams Parsons; Genglin Jin; Roger E. McLendon; B. Ahmed Rasheed; Weishi Yuan; Ivan Kos; Ines Batinic-Haberle; Siân Jones; Gregory J. Riggins; Henry S. Friedman; Allan H. Friedman; David A. Reardon; James E. Herndon; Kenneth W. Kinzler; Victor E. Velculescu; Bert Vogelstein; Darell D. Bigner

BACKGROUND A recent genomewide mutational analysis of glioblastomas (World Health Organization [WHO] grade IV glioma) revealed somatic mutations of the isocitrate dehydrogenase 1 gene (IDH1) in a fraction of such tumors, most frequently in tumors that were known to have evolved from lower-grade gliomas (secondary glioblastomas). METHODS We determined the sequence of the IDH1 gene and the related IDH2 gene in 445 central nervous system (CNS) tumors and 494 non-CNS tumors. The enzymatic activity of the proteins that were produced from normal and mutant IDH1 and IDH2 genes was determined in cultured glioma cells that were transfected with these genes. RESULTS We identified mutations that affected amino acid 132 of IDH1 in more than 70% of WHO grade II and III astrocytomas and oligodendrogliomas and in glioblastomas that developed from these lower-grade lesions. Tumors without mutations in IDH1 often had mutations affecting the analogous amino acid (R172) of the IDH2 gene. Tumors with IDH1 or IDH2 mutations had distinctive genetic and clinical characteristics, and patients with such tumors had a better outcome than those with wild-type IDH genes. Each of four tested IDH1 and IDH2 mutations reduced the enzymatic activity of the encoded protein. CONCLUSIONS Mutations of NADP(+)-dependent isocitrate dehydrogenases encoded by IDH1 and IDH2 occur in a majority of several types of malignant gliomas.


Science | 2007

The genomic landscapes of human breast and colorectal cancers.

Laura D. Wood; D. Williams Parsons; Siân Jones; Jimmy Lin; Tobias Sjöblom; Rebecca J. Leary; Dong Shen; Simina M. Boca; Thomas D. Barber; Janine Ptak; Natalie Silliman; Steve Szabo; Zoltan Dezso; Vadim Ustyanksky; Tatiana Nikolskaya; Yuri Nikolsky; Rachel Karchin; Paul Wilson; Joshua S. Kaminker; Zemin Zhang; Randal Croshaw; Joseph Willis; Dawn Dawson; Michail Shipitsin; James K V Willson; Saraswati Sukumar; Kornelia Polyak; Ben Ho Park; Charit L. Pethiyagoda; P.V. Krishna Pant

Human cancer is caused by the accumulation of mutations in oncogenes and tumor suppressor genes. To catalog the genetic changes that occur during tumorigenesis, we isolated DNA from 11 breast and 11 colorectal tumors and determined the sequences of the genes in the Reference Sequence database in these samples. Based on analysis of exons representing 20,857 transcripts from 18,191 genes, we conclude that the genomic landscapes of breast and colorectal cancers are composed of a handful of commonly mutated gene “mountains” and a much larger number of gene “hills” that are mutated at low frequency. We describe statistical and bioinformatic tools that may help identify mutations with a role in tumorigenesis. These results have implications for understanding the nature and heterogeneity of human cancers and for using personal genomics for tumor diagnosis and therapy.


Acta Neuropathologica | 2012

Molecular subgroups of medulloblastoma: the current consensus

Michael D. Taylor; Paul A. Northcott; Andrey Korshunov; Marc Remke; Yoon-Jae Cho; Steven C. Clifford; Charles G. Eberhart; D. Williams Parsons; Stefan Rutkowski; Amar Gajjar; David W. Ellison; Peter Lichter; Richard J. Gilbertson; Scott L. Pomeroy; Marcel Kool; Stefan M. Pfister

Medulloblastoma, a small blue cell malignancy of the cerebellum, is a major cause of morbidity and mortality in pediatric oncology. Current mechanisms for clinical prognostication and stratification include clinical factors (age, presence of metastases, and extent of resection) as well as histological subgrouping (classic, desmoplastic, and large cell/anaplastic histology). Transcriptional profiling studies of medulloblastoma cohorts from several research groups around the globe have suggested the existence of multiple distinct molecular subgroups that differ in their demographics, transcriptomes, somatic genetic events, and clinical outcomes. Variations in the number, composition, and nature of the subgroups between studies brought about a consensus conference in Boston in the fall of 2010. Discussants at the conference came to a consensus that the evidence supported the existence of four main subgroups of medulloblastoma (Wnt, Shh, Group 3, and Group 4). Participants outlined the demographic, transcriptional, genetic, and clinical differences between the four subgroups. While it is anticipated that the molecular classification of medulloblastoma will continue to evolve and diversify in the future as larger cohorts are studied at greater depth, herein we outline the current consensus nomenclature, and the differences between the medulloblastoma subgroups.


Science | 2011

The genetic landscape of the childhood cancer medulloblastoma

D. Williams Parsons; Meng Li; Xiaosong Zhang; Siân Jones; Rebecca J. Leary; Jimmy Lin; Simina M. Boca; Hannah Carter; Josue Samayoa; Chetan Bettegowda; Gary L. Gallia; George I. Jallo; Zev A. Binder; Yuri Nikolsky; James Hartigan; Doug Smith; Daniela S. Gerhard; Daniel W. Fults; Scott R. VandenBerg; Mitchel S. Berger; Suely Kazue Nagahashi Marie; Sueli Mieko Oba Shinjo; Carlos Clara; Peter C. Phillips; Jane E. Minturn; Jaclyn A. Biegel; Alexander R. Judkins; Adam C. Resnick; Phillip B. Storm; Tom Curran

Genomic analysis of a childhood cancer reveals markedly fewer mutations than what is typically seen in adult cancers. Medulloblastoma (MB) is the most common malignant brain tumor of children. To identify the genetic alterations in this tumor type, we searched for copy number alterations using high-density microarrays and sequenced all known protein-coding genes and microRNA genes using Sanger sequencing in a set of 22 MBs. We found that, on average, each tumor had 11 gene alterations, fewer by a factor of 5 to 10 than in the adult solid tumors that have been sequenced to date. In addition to alterations in the Hedgehog and Wnt pathways, our analysis led to the discovery of genes not previously known to be altered in MBs. Most notably, inactivating mutations of the histone-lysine N-methyltransferase genes MLL2 or MLL3 were identified in 16% of MB patients. These results demonstrate key differences between the genetic landscapes of adult and childhood cancers, highlight dysregulation of developmental pathways as an important mechanism underlying MBs, and identify a role for a specific type of histone methylation in human tumorigenesis.


Science | 2009

Exomic Sequencing Identifies PALB2 as a Pancreatic Cancer Susceptibility Gene

Siân Jones; Ralph H. Hruban; Mihoko Kamiyama; Michael Borges; Xiaosong Zhang; D. Williams Parsons; Jimmy Lin; Emily Palmisano; Kieran Brune; Elizabeth M. Jaffee; Christine A. Iacobuzio-Donahue; Anirban Maitra; Giovanni Parmigiani; Scott E. Kern; Victor E. Velculescu; Kenneth W. Kinzler; Bert Vogelstein; James R. Eshleman; Michael Goggins; Alison P. Klein

Through complete sequencing of the protein-coding genes in a patient with familial pancreatic cancer, we identified a germline, truncating mutation in PALB2 that appeared responsible for this patients predisposition to the disease. Analysis of 96 additional patients with familial pancreatic cancer revealed three distinct protein-truncating mutations, thereby validating the role of PALB2 as a susceptibility gene for pancreatic cancer. PALB2 mutations have been previously reported in patients with familial breast cancer, and the PALB2 protein is a binding partner for BRCA2. These results illustrate that complete, unbiased sequencing of protein-coding genes can lead to the identification of a gene responsible for a hereditary disease.


Cancer Research | 2008

Epitope Landscape in Breast and Colorectal Cancer

Neil Howard Segal; D. Williams Parsons; Karl S. Peggs; Victor E. Velculescu; Ken W. Kinzler; Bert Vogelstein; James P. Allison

The finding that individual cancers contain many mutant genes not present in normal tissues has prompted considerable interest in the cancer epitope landscape. To further understand such effects, we applied in silico-based epitope prediction algorithms and high throughput post hoc analysis to identify candidate tumor antigens. Analysis of 1,152 peptides containing missense mutations previously identified in breast and colorectal cancer revealed that individual cancers accumulate on average approximately 10 and approximately 7 novel and unique HLA-A*0201 epitopes, respectively, including genes implicated in the neoplastic process. These data suggest that, with appropriate manipulation of the immune system, tumor cell destruction in situ may provide a polyvalent tumor vaccine without a requirement for knowledge of the targeted antigens.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Integrated analysis of homozygous deletions, focal amplifications, and sequence alterations in breast and colorectal cancers

Rebecca J. Leary; Jimmy Lin; Jordan M. Cummins; Simina M. Boca; Laura D. Wood; D. Williams Parsons; Siân Jones; Tobias Sjöblom; Ben Ho Park; Ramon Parsons; Joseph Willis; Dawn Dawson; James K V Willson; Tatiana Nikolskaya; Yuri Nikolsky; Levy Kopelovich; Nick Papadopoulos; Len A. Pennacchio; Tian Li Wang; Sanford D. Markowitz; Giovanni Parmigiani; Kenneth W. Kinzler; Bert Vogelstein; Victor E. Velculescu

We have performed a genome-wide analysis of copy number changes in breast and colorectal tumors using approaches that can reliably detect homozygous deletions and amplifications. We found that the number of genes altered by major copy number changes, deletion of all copies or amplification to at least 12 copies per cell, averaged 17 per tumor. We have integrated these data with previous mutation analyses of the Reference Sequence genes in these same tumor types and have identified genes and cellular pathways affected by both copy number changes and point alterations. Pathways enriched for genetic alterations included those controlling cell adhesion, intracellular signaling, DNA topological change, and cell cycle control. These analyses provide an integrated view of copy number and sequencing alterations on a genome-wide scale and identify genes and pathways that could prove useful for cancer diagnosis and therapy.


Clinical Cancer Research | 2009

SMAD4 Gene Mutations Are Associated with Poor Prognosis in Pancreatic Cancer

Amanda Blackford; Oscar K. Serrano; Christopher L. Wolfgang; Giovanni Parmigiani; Siân Jones; Xiaosong Zhang; D. Williams Parsons; Jimmy Lin; Rebecca J. Leary; James R. Eshleman; Michael Goggins; Elizabeth M. Jaffee; Christine A. Iacobuzio-Donahue; Anirban Maitra; John L. Cameron; Kelly Olino; Richard D. Schulick; Jordan M. Winter; Joseph M. Herman; Daniel A. Laheru; Alison P. Klein; Bert Vogelstein; Kenneth W. Kinzler; Victor E. Velculescu; Ralph H. Hruban

Purpose: Recently, the majority of protein coding genes were sequenced in a collection of pancreatic cancers, providing an unprecedented opportunity to identify genetic markers of prognosis for patients with adenocarcinoma of the pancreas. Experimental Design: We previously sequenced more than 750 million base pairs of DNA from 23,219 transcripts in a series of 24 adenocarcinomas of the pancreas. In addition, 39 genes that were mutated in more than one of these 24 cancers were sequenced in a separate panel of 90 well-characterized adenocarcinomas of the pancreas. Of these 114 patients, 89 underwent pancreaticoduodenectomy, and the somatic mutations in these cancers were correlated with patient outcome. Results: When adjusted for age, lymph node status, margin status, and tumor size, SMAD4 gene inactivation was significantly associated with shorter overall survival (hazard ratio, 1.92; 95% confidence interval, 1.20-3.05; P = 0.006). Patients with SMAD4 gene inactivation survived a median of 11.5 months, compared with 14.2 months for patients without SMAD4 inactivation. By contrast, mutations in CDKN2A or TP53 or the presence of multiple (≥4) mutations or homozygous deletions among the 39 most frequently mutated genes were not associated with survival. Conclusions:SMAD4 gene inactivation is associated with poorer prognosis in patients with surgically resected adenocarcinoma of the pancreas.

Collaboration


Dive into the D. Williams Parsons's collaboration.

Top Co-Authors

Avatar

Sharon E. Plon

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Angshumoy Roy

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Bert Vogelstein

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David A. Wheeler

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jimmy Lin

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Siân Jones

Johns Hopkins University

View shared research outputs
Researchain Logo
Decentralizing Knowledge