Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Da-Chuan Yin is active.

Publication


Featured researches published by Da-Chuan Yin.


Review of Scientific Instruments | 2008

A containerless levitation setup for liquid processing in a superconducting magnet

Hui-Meng Lu; Da-Chuan Yin; Hai-Sheng Li; Liqiang Geng; Chen-Yan Zhang; Qin-Qin Lu; Yun-Zhu Guo; Wei-Hong Guo; Peng Shang; Nobuko I. Wakayama

Containerless processing of materials is considered beneficial for obtaining high quality products due to the elimination of the detrimental effects coming from the contact with container walls. Many containerless processing methods are realized by levitation techniques. This paper describes a containerless levitation setup that utilized the magnetization force generated in a gradient magnetic field. It comprises a levitation unit, a temperature control unit, and a real-time observation unit. Known volume of liquid diamagnetic samples can be levitated in the levitation chamber, the temperature of which is controlled using the temperature control unit. The evolution of the levitated sample is observed in real time using the observation unit. With this setup, containerless processing of liquid such as crystal growth from solution can be realized in a well-controlled manner. Since the levitation is achieved using a superconducting magnet, experiments requiring long duration time such as protein crystallization and simulation of space environment for living system can be easily succeeded.


Carbohydrate Polymers | 2014

Protective effect of polysaccharides on simulated microgravity-induced functional inhibition of human NK cells.

Ting Huyan; Qi Li; Hui Yang; Mingliang Jin; Mingjie Zhang; Lin-Jie Ye; Ji Li; Qingsheng Huang; Da-Chuan Yin

Polysaccharides are believed to be strong immunostimulants that can promote the proliferation and activity of T cells, B cells, macrophages and natural killer (NK) cells. This study aimed to investigate the effects of five polysaccharides (Grifola frondosa polysaccharide (GFP), lentinan (LNT), G. lucidum polysaccharide (GLP), Lycium barbarum polysaccharide (LBP) and yeast glucan (YG)) on primary human NK cells under normal or simulated microgravity (SMG) conditions. Our results demonstrated that polysaccharides markedly promoted the cytotoxicity of NK cells by enhancing IFN-γ and perforin secretion and increasing the expression of the activating receptor NKp30 under normal conditions. Meanwhile polysaccharides can enhance NK cell function under SMG conditions by restoring the expression of the activating receptor NKG2D and reducing the early apoptosis and late apoptosis/necrosis. Moreover, the antibody neutralization test showed that CR3 may be the critical receptor involved in polysaccharides induced NK cells activation. These findings indicated that polysaccharides may be used as immune regulators to promote the health of the public and astronauts during space missions.


Journal of Crystal Growth | 2001

Study of lysozyme crystal growth under a strong magnetic field using a Mach–Zehnder interferometer

Da-Chuan Yin; Yuko Inatomi; Kazuhiko Kuribayashi

Abstract This paper reports concentration measurement of protein solution under a strong magnetic field. The effect of the magnetic field on the time evolution of the concentration during the growth process of tetragonal crystal of lysozyme was investigated by interferometry. A Mach–Zehnder interferometer was applied to a superconducting magnet for the first time to in situ study the concentration profile beyond the solid/liquid interface during the crystal growth. Results showed that during the growth process, decrease in the lysozyme concentration under homogeneous magnetic field was slowed down as compared with those without magnetic field. It was postulated that solutal convection during the crystal growth might have been influenced by the magnetic field. However, study of the convection under different magnetic fields indicated little effect of the magnetic field on the convection. Furthermore, after checking the solubility under magnetic field, we found that there was little effect of magnetic field on the solubility. Further investigation with respect to the growth and dissolution processes and mechanisms under magnetic field are in progress.


International Journal of Radiation Biology | 2012

Large gradient high magnetic field affects FLG29.1 cells differentiation to form osteoclast-like cells.

Shengmeng Di; Zongcheng Tian; Airong Qian; Jingbao Li; Jiawei Wu; Zhe Wang; Dayu Zhang; Da-Chuan Yin; Maria Luisa Brandi; Peng Shang

Abstract Purpose: We aimed to investigate the effects of different apparent gravities (μ g, 1 g and 2 g) produced by large gradient high magnetic field (LGHMF) on human preosteoclast FLG29.1 cells. Materials and methods: FLG29.1 cells were cultured in Roswell Park Memorial Institute (RPMI)-1640 medium. Cells were exposed to LGHMF for 72 h. On culture day 1, 2, 3, cell proliferation was detected by 3-(4,5)-dimethylthiahi-azo (-z-y1)-3,5-di-phenytetrazoliumromide (MTT) method. On day 3, cell apoptosis and necrosis were assayed by Hoechst and propidium iodide (PI) staining. After cells were exposed to LGHMF for 72 h with the induction of 12-o-tetradecanoylphorbol 13-acetate (TPA), Tartrate-Resistant Acid Phosphatase (TRAP) positive cells and nitric oxide (NO) release were detected by TRAP staining and Griess method, respectively. Intracellular TRAP activity was measured using nitrophenylphosphate (pNPP) as the substrate. Results: MTT detection revealed that compared to control, FLG 29.1 cell proliferation in the μ g and 2 g groups were promoted. However, there is no obvious difference between the 1 g and control groups. Hoechst-PI staining showed that LGHMF promoted cell apoptosis and necrosis, especially in the 2 g group. Exposure to LGHMF inhibited the NO concentration of supernatant. Both the TRAP activity and the number of TRAP positive cells were higher in cells of μ g group than those in 2 g group. In the 1 g group, they were decreased significantly compared to control. Conclusions: These findings indicate that LGHMF could directly affect human preosteoclast FLG29.1 cells survival and differentiation. High magnetic flux inhibited osteoclasts formation and differentiation while reduced apparent gravity enhanced osteoclastogenesis.


International Journal of Molecular Sciences | 2012

Evaporation rate of water as a function of a magnetic field and field gradient.

Yun-Zhu Guo; Da-Chuan Yin; Hui-Ling Cao; Jian-Yu Shi; Chen-Yan Zhang; Yong-Ming Liu; Huan-Huan Huang; Yue Liu; Yan Wang; Wei-Hong Guo; Airong Qian; Peng Shang

The effect of magnetic fields on water is still a highly controversial topic despite the vast amount of research devoted to this topic in past decades. Enhanced water evaporation in a magnetic field, however, is less disputed. The underlying mechanism for this phenomenon has been investigated in previous studies. In this paper, we present an investigation of the evaporation of water in a large gradient magnetic field. The evaporation of pure water at simulated gravity positions (0 gravity level (ab. g), 1 g, 1.56 g and 1.96 g) in a superconducting magnet was compared with that in the absence of the magnetic field. The results showed that the evaporation of water was indeed faster in the magnetic field than in the absence of the magnetic field. Furthermore, the amount of water evaporation differed depending on the position of the sample within the magnetic field. In particular, the evaporation at 0 g was clearly faster than that at other positions. The results are discussed from the point of view of the evaporation surface area of the water/air interface and the convection induced by the magnetization force due to the difference in the magnetic susceptibility of water vapor and the surrounding air.


Journal of the Acoustical Society of America | 2012

Rapid crystallization from acoustically levitated droplets

Hui-Ling Cao; Da-Chuan Yin; Yun-Zhu Guo; Xiaoliang Ma; Jin He; Wei-Hong Guo; Xu-Zhuo Xie; Bo-Ru Zhou

This paper reports on an ultrasonic levitation system developed for crystallization from solution in a containerless condition. The system has been proven to be able to levitate droplets stably and grow crystals rapidly and freely from a levitated droplet. Crystals of four samples, including NaCl, NH(4)Cl, lysozyme, and proteinase K, were obtained successfully utilizing the system. The studies showed that the crystals obtained from the acoustically levitated droplets all exhibited higher growth rates, larger sizes, better shapes, fewer crystals, as well as fewer twins and shards, compared with the control on a vessel wall. The results indicated that containerless ultrasonic levitation could play a key role in improving the crystallization of both inorganic salts and proteins. The ultrasonic levitation system could be used as a ground-based microgravity simulation platform, which could swiftly perform crystallization and screening of crystallization conditions for space crystallization and other ground-based containerless techniques. Moreover, the approach could also be conveniently applied to researching the dynamics and mechanism of crystallization. In addition, the device could be used for the preparation of high-purity materials, analysis of minute or poisonous samples, study of living cells, environmental monitoring, and so on.


Journal of Applied Crystallography | 2010

Effect of mechanical vibration on protein crystallization

Qin-Qin Lu; Da-Chuan Yin; Yong-Ming Liu; Xikai Wang; Pengfei Yang; Zheng‐Tang Liu; Peng Shang

Mechanical vibration often occurs during protein crystallization; however, it is seldom considered as one of the factors influencing the crystallization process. This paper reports an investigation of the crystallization of five proteins using various crystallization conditions in a temperature-controlled chamber on the table of a mechanical vibrator. The results show that mechanical vibration can reduce the number of crystals and improve their optical perfection. During screening of the crystallization conditions it was found that mechanical vibration could help to obtain crystals in a highly supersaturated solution in which amorphous precipitates often normally appear. It is concluded that mechanical vibration can serve as a tool for growing optically perfect crystals or for obtaining more crystallization conditions during crystallization screening.


Scientific Reports | 2015

Utilisation of adsorption and desorption for simultaneously improving protein crystallisation success rate and crystal quality

Yun-Zhu Guo; Li-Hua Sun; Dominik Oberthuer; Chen-Yan Zhang; Jian-Yu Shi; Jianglei Di; Bao-Liang Zhang; Hui-Ling Cao; Yong-Ming Liu; Jian Li; Qian Wang; Huan-Huan Huang; Jun Liu; Jan-Mirco Schulz; Qiu-Yu Zhang; Jianlin Zhao; Christian Betzel; Jianhua He; Da-Chuan Yin

High-quality protein crystals of suitable size are an important prerequisite for applying X-ray crystallography to determine the 3-dimensional structure of proteins. However, it is often difficult to obtain protein crystals of appropriate size and quality because nucleation and growth processes can be unsuccessful. Here, we show that by adsorbing proteins onto porous polystyrene-divinylbenzene microspheres (SDB) floating on the surface of the crystallisation solution, a localised high supersaturation region at the surface of the microspheres and a low supersaturation region below the microspheres can coexist in a single solution. The crystals will easily nucleate in the region of high supersaturation, but when they grow to a certain size, they will sediment to the region of low supersaturation and continue to grow. In this way, the probability of crystallisation and crystal quality can be simultaneously increased in a single solution without changing other crystallisation parameters.


Acta Crystallographica Section D-biological Crystallography | 2002

An investigation of magnetic field effects on the dissolution of lysozyme crystal and related phenomena

Da-Chuan Yin; Y. Inatomi; Nobuko I. Wakayama; Wei Huang; K. Kuribayashi

It is now widely known that a magnetic field, either homogeneous or inhomogeneous, depresses the growth process of protein crystals. In this report, the dissolution process of tetragonal lysozyme crystals is also confirmed to be depressed by a homogeneous magnetic field (inhomogeneity <1.5%). The dissolution process was monitored using a Mach-Zehnder interferometer. The results showed that the concentration change during the dissolution process was slowed in a magnetic field compared with that in the absence of a magnetic field. It was concluded that the diffusion coefficient of the lysozyme molecules in the solution was decreased by the magnetic field. The decrease in the diffusion coefficient may contribute to the slowed growth process. The changes in the spatial concentration distribution under a vertical temperature gradient before crystallization in the absence of a magnetic field was also studied. The concentration in the lower, colder part of the cell increased, while it decreased in the upper, hotter part, a similar phenomenon to that discovered by previous investigators in an isothermal supersaturated solution system. Aggregated domain formation is proposed to explain the concentration redistribution before crystal growth and a suspended crystal model is proposed to explain the decrease of diffusivity in a magnetic field.


International Journal of Biological Macromolecules | 2017

Silk fibroin/chitosan scaffold with tunable properties and low inflammatory response assists the differentiation of bone marrow mesenchymal stem cells

Da-Wei Li; Xiaohua Lei; Feng-Li He; Jin He; Ya-Li Liu; Ya-Jing Ye; Xudong Deng; Enkui Duan; Da-Chuan Yin

The physical and chemical properties of the scaffold are known to play important roles in three-dimensional (3D) cell culture, which always determine the cellular fate or the results of implantation. To control these properties becomes necessary for meeting the requirements of a variety of tissue engineering applications. In this study, a series of silk fibroin/chitosan (SF/CS) scaffolds with tunable properties were prepared using freeze-drying method, and the rat bone marrow-derived mesenchymal stem cells (BM-MSCs) were seeded in these scaffolds to evaluate their availability of use in tissue engineering. The 3D structure, mechanical properties and degradation ability of SF/CS scaffold can be tuned by changing the total concentration of the precursor solution and the blending ratio between SF and CS. BM-MSCs cultured in the SF/CS scaffold exhibited excellent proliferation and multiple morphologies. The induction of osteogenic and adipogenic differentiation of BM-MSCs were successful in this scaffold when cultured in vitro. Subcutaneous implantation of the SF/CS scaffolds did not cause any inflammatory response within four weeks, which revealed good compatibility. Moreover, the implanted scaffold allowed host cells to invade, adhere, grow and form new blood vessels. With these excellent performance, SF/CS scaffold has great potential in preparing implants for tissue engineering applications.

Collaboration


Dive into the Da-Chuan Yin's collaboration.

Top Co-Authors

Avatar

Peng Shang

Northwestern Polytechnical University

View shared research outputs
Top Co-Authors

Avatar

Qin-Qin Lu

Northwestern Polytechnical University

View shared research outputs
Top Co-Authors

Avatar

Chen-Yan Zhang

Northwestern Polytechnical University

View shared research outputs
Top Co-Authors

Avatar

Hui-Meng Lu

Northwestern Polytechnical University

View shared research outputs
Top Co-Authors

Avatar

Yong-Ming Liu

Northwestern Polytechnical University

View shared research outputs
Top Co-Authors

Avatar

Yun-Zhu Guo

Northwestern Polytechnical University

View shared research outputs
Top Co-Authors

Avatar

Wei-Hong Guo

Northwestern Polytechnical University

View shared research outputs
Top Co-Authors

Avatar

Jin He

Northwestern Polytechnical University

View shared research outputs
Top Co-Authors

Avatar

Ya-Jing Ye

Northwestern Polytechnical University

View shared research outputs
Top Co-Authors

Avatar

Rui-Qing Chen

Northwestern Polytechnical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge