Da-Gang Hu
Shandong Agricultural University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Da-Gang Hu.
Plant Physiology | 2016
Da-Gang Hu; Cui-Hui Sun; Qi-Jun Ma; Chun-Xiang You; Lailiang Cheng; Yu-Jin Hao
An MYB transcription factor influences organ coloration and acidity by activating the expression of the genes encoding vacuolar proton pump subunits as well as anthocyanin transporters and malate transporters. Tonoplast transporters, including proton pumps and secondary transporters, are essential for plant cell function and for quality formation of fleshy fruits and ornamentals. Vacuolar transport of anthocyanins, malate, and other metabolites is directly or indirectly dependent on the H+-pumping activities of vacuolar H+-ATPase (VHA) and/or vacuolar H+-pyrophosphatase, but how these proton pumps are regulated in modulating vacuolar transport is largely unknown. Here, we report a transcription factor, MdMYB1, in apples that binds to the promoters of two genes encoding the B subunits of VHA, MdVHA-B1 and MdVHA-B2, to transcriptionally activate its expression, thereby enhancing VHA activity. A series of transgenic analyses in apples demonstrates that MdMYB1/10 controls cell pH and anthocyanin accumulation partially by regulating MdVHA-B1 and MdVHA-B2. Furthermore, several other direct target genes of MdMYB10 are identified, including MdVHA-E2, MdVHP1, MdMATE-LIKE1, and MdtDT, which are involved in H+-pumping or in the transport of anthocyanins and malates into vacuoles. Finally, we show that the mechanism by which MYB controls malate and anthocyanin accumulation in apples also operates in Arabidopsis (Arabidopsis thaliana). These findings provide novel insights into how MYB transcription factors directly modulate the vacuolar transport system in addition to anthocyanin biosynthesis, consequently controlling organ coloration and cell pH in plants.
Physiologia Plantarum | 2016
Da-Gang Hu; Qi-Jun Ma; Cui-Hui Sun; Mei-Hong Sun; Chun-Xiang You; Yu-Jin Hao
Soil salinity hinders the growth of most higher plants and becomes a gradually increasing threat to the agricultural production of such crops as the woody plant apple. In this study, a calcineurin B-like protein (CBL)-interacting protein kinase, MdCIPK24-LIKE1 (named as MdSOS2L1), was identified. Quantitative real-time polymerase chain reaction (qRT-PCR) assay revealed that the expression of MdSOS2L1 was upregulated by CaCl2 . Yeast two-hybrid (Y2H) assay and transiently transgenic analysis demonstrated that the MdSOS2L1 protein kinase physically interacted with MdCBL1, MdCBL4 and MdCBL10 proteins to increase salt tolerance in apple. Furthermore, iTRAQ proteome combined with liquid chromatography-tandem mass spectrometry (LC/MS) analysis found that several proteins, which are involved in reactive oxygen species (ROS) scavenging, procyanidin biosynthesis and malate metabolism, were induced in MdSOS2L1-overexpressing apple plants. Subsequent studies have shown that MdSOS2L1 increased antioxidant metabolites such as procyanidin and malate to improve salt tolerance in apple and tomato. In summary, our studies provide a mechanism in which SOS2L1 enhances the salt stress tolerance in apple and tomato.
PLOS Genetics | 2016
Da-Gang Hu; Cui-Hui Sun; Quan-Yan Zhang; Jian-Ping An; Chun-Xiang You; Yu-Jin Hao
Glucose induces anthocyanin accumulation in many plant species; however, the molecular mechanism involved in this process remains largely unknown. Here, we found that apple hexokinase MdHXK1, a glucose sensor, was involved in sensing exogenous glucose and regulating anthocyanin biosynthesis. In vitro and in vivo assays suggested that MdHXK1 interacted directly with and phosphorylated an anthocyanin-associated bHLH transcription factor (TF) MdbHLH3 at its Ser361 site in response to glucose. Furthermore, both the hexokinase_2 domain and signal peptide are crucial for the MdHXK1-mediated phosphorylation of MdbHLH3. Moreover, phosphorylation modification stabilized MdbHLH3 protein and enhanced its transcription of the anthocyanin biosynthesis genes, thereby increasing anthocyanin biosynthesis. Finally, a series of transgenic analyses in apple calli and fruits demonstrated that MdHXK1 controlled glucose-induced anthocyanin accumulation at least partially, if not completely, via regulating MdbHLH3. Overall, our findings provide new insights into the mechanism of the glucose sensor HXK1 modulation of anthocyanin accumulation, which occur by directly regulating the anthocyanin-related bHLH TFs in response to a glucose signal in plants.
Journal of Plant Physiology | 2013
Qing-Long Dong; Chun-Rong Wang; Dan-Dan Liu; Da-Gang Hu; Mou-Jing Fang; Chun-Xiang You; Yu-Xin Yao; Yu-Jin Hao
Vacuole H(+)-ATPases (VHAs) are plant proton pumps, which play a crucial role in plant growth and stress tolerance. In the present study, we demonstrated that the apple vacuolar H(+)-ATPase subunit A (MdVHA-A) is highly conserved with subunit A of VHA (VHA-A) proteins from other plant species. MdVHA-A was expressed in vegetative and reproductive organs. In apple in vitro shoot cultures, expression was induced by polyethylene glycol (PEG)-mediated osmotic stress. We further verified that over-expression of MdVHA-A conferred transgenic tobacco seedlings with enhanced vacuole H+-ATPase (VHA) activity and improved drought tolerance. The enhanced PEG-mimic drought response of transgenic tobacco seedlings was related to an extended lateral root system (dependent on auxin translocation) and more efficient osmotic adjustment. Our results indicate that MdVHA-A is a candidate gene for improving drought tolerance in plants.
Journal of Experimental Botany | 2017
Xiao-Juan Liu; Xiu-Hong An; Xin Liu; Da-Gang Hu; Xiao-Fei Wang; Chun-Xiang You; Yu-Jin Hao
MdSnRK1.1 regulates anthocyanin and proanthocyanidin accumulation in apple by phosphorylation and modulation of MdJAZ18 stability, explaining how jasmonic acid acts together with sucrose to regulate anthocyanin biosynthesis.
Plant Physiology | 2017
Qi-Jun Ma; Mei-Hong Sun; Jing Lu; Ya-Jing Liu; Da-Gang Hu; Yu-Jin Hao
The ABA-responsive transcription factor MdAREB2 directly activates the expression of amylase and sugar transporter genes to promote soluble sugar accumulation. Sugars play important roles in plant growth and development, crop yield and quality, as well as responses to abiotic stresses. Abscisic acid (ABA) is a multifunctional hormone. However, the exact mechanism by which ABA regulates sugar accumulation is largely unknown in plants. Here, we tested the expression profile of several sugar transporter and amylase genes in response to ABA treatment. MdSUT2 and MdAREB2 were isolated and genetically transformed into apple (Malus domestica) to investigate their roles in ABA-induced sugar accumulation. The MdAREB2 transcription factor was found to bind to the promoters of the sugar transporter and amylase genes and activate their expression. Both MdAREB2 and MdSUT2 transgenic plants produced more soluble sugars than controls. Furthermore, MdAREB2 promoted the accumulation of sucrose and soluble sugars in an MdSUT2-dependent manner. Our results demonstrate that the ABA-responsive transcription factor MdAREB2 directly activates the expression of amylase and sugar transporter genes to promote soluble sugar accumulation, suggesting a mechanism by which ABA regulates sugar accumulation in plants.
Plant Physiology and Biochemistry | 2016
Qi-Jun Ma; Mei-Hong Sun; Ya-Jing Liu; Jing Lu; Da-Gang Hu; Yu-Jin Hao
Sucrose is not only the primary photosynthetic product but also the major component translocated in the phloem of economically important plant species. Sucrose transporters or carriers (SUTs or SUCs), function as sucrose/H+ symporters and play a crucial role in determining the cell-to-cell distribution of sucrose throughout the entire plant. However, whether such genes are involved in responses to abiotic stress and other biological processes is largely unknown. Here, we report that MdSUT2 in apple is a homolog of the Arabidopsis vacuolar sucrose transporter AtSUT2. Ectopic expression of MdSUT2 in Arabidopsis decreased sucrose sensitivity in germination and seeding stage and increased sucrose transport activity. In addition, our results showed that MdSUT2 impacted on plant growth by accelerating vegetative growth and promoting early flowering in Arabidopsis. Overexpression of MdSUT2 significantly improved abiotic stress tolerance including NaCl, ABA, and mannitol in apple calli and Arabidopsis. Together, these findings provide evidence that the apple sucrose transporter MdSUT2 is involved in abiotic stress resistance and the regulation of plant growth and development.
Plant Journal | 2017
Da-Gang Hu; Yuan-Yuan Li; Quan-Yan Zhang; Ming Li; Cui-Hui Sun; Jian-Qiang Yu; Yu-Jin Hao
Malate, the predominant organic acid in many fruits, is a crucial component of the organoleptic quality of fruit, including taste and flavor. The genetic and environmental mechanisms affecting malate metabolism in fruit cells have been studied extensively. However, the transcriptional regulation of malate-metabolizing enzymes and vacuolar transporters remains poorly understood. Our previous studies demonstrated that MdMYB1 modulates anthocyanin accumulation and vacuolar acidification by directly activating vacuolar transporters, including MdVHA-B1, MdVHA-E, MdVHP1 and MdtDT. Interestingly, we isolated and identified a MYB transcription factor, MdMYB73, a distant relative of MdMYB1 in this study. It was subsequently found that MdMYB73 protein bound directly to the promoters of MdALMT9 (aluminum-activated malate transporter 9), MdVHA-A (vacuolar ATPase subunit A) and MdVHP1 (vacuolar pyrophosphatase 1), transcriptionally activating their expression and thereby enhancing their activities. Analyses of transgenic apple calli demonstrated that MdMYB73 influenced malate accumulation and vacuolar pH. Furthermore, MdCIbHLH1 interacted with MdMYB73 and enhanced its activity upon downstream target genes. These findings help to elucidate how MdMYB73 directly modulates the vacuolar transport system to affect malate accumulation and vacuolar pH in apple.
Plant Cell Reports | 2016
Da-Gang Hu; Cui-Hui Sun; Mei-Hong Sun; Yu-Jin Hao
Key messageSalt-induced phosphorylation of MdVHA-B1 protein was mediated by MdSOS2L1 protein kinase, and thereby increasing malate content in apple.AbstractSalinity is an important environmental factor that influences malate accumulation in apple. However, the molecular mechanism by which salinity regulates this process is poorly understood. In this work, we found that MdSOS2L1, a novel AtSOS2-LIKE protein kinase, interacts with V-ATPase subunit MdVHA-B1. Furthermore, MdSOS2L1 directly phosphorylates MdVHA-B1 at Ser396 site to modulate malate accumulation in response to salt stress. Meanwhile, a series of transgenic analyses in apple calli showed that the MdSOS2L1–MdVHAB1 pathway was involved in the regulation of malate accumulation. Finally, a viral vector-based transformation approach demonstrated that the MdSOS2L1–MdVHAB1 pathway also modulated malate accumulation in apple fruits with or without salt stress. Collectively, our findings provide a new insight into the mechanism by which MdSOS2L1 phosphorylates MdVHA-B1 to modulate malate accumulation in response to salinity in apple.
Plant Science | 2018
Cui-Hui Sun; Jian-Qiang Yu; Li-Zhu Wen; Yun-Hui Guo; Xia Sun; Yu-Jin Hao; Da-Gang Hu; Cheng-Shu Zheng
Root system architecture is an important agronomic trait by which plants both acquire water and nutrients from the soil and adapt to survive in a complex environment. The adaptation of plant root systems to environmental constraints largely depends on the growth and development of lateral roots (LRs). MADS-box transcription factors (TFs) are important known regulators of plant growth, development, and response to environmental stimuli. However, the potential mechanisms by which they regulate LRs development remain poorly understood. Here, we identified a MADS-box chrysanthemum gene CmANR1, homologous to the Arabidopsis gene AtANR1, which plays a key role in the regulation of LR development. qRT-PCR assays indicated that CmANR1 was primarily expressed in chrysanthemum roots and was rapidly induced by exposure to high nitrate concentrations. Ectopic expression of CmANR1 in Arabidopsis significantly increased the number and length of emerged LRs compared to the wild-type (col) control, but had no obvious affect on primary root (PR) development. We also found that CmANR1 positively influenced auxin accumulation in LRs at least partly by improving auxin biosynthesis and transport, thereby promoting LR development. Furthermore, we found that ANR1 formed homo- and heterodimers through interactions with itself and AGL21 at its C-terminal domain. Overall, our findings provide considerable new information about the mechanisms by which the chrysanthemum MADS-box TF CmANR1 mediates LR development by directly altering auxin accumulation.