Yu-Jin Hao
Shandong Agricultural University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yu-Jin Hao.
Plant Physiology | 2012
Yuan-Yuan Li; Ke Mao; Cheng Zhao; Xian-Yan Zhao; Hua-Lei Zhang; Huai-Rui Shu; Yu-Jin Hao
MdMYB1 is a crucial regulator of light-induced anthocyanin biosynthesis and fruit coloration in apple (Malus domestica). In this study, it was found that MdMYB1 protein accumulated in the light but degraded via a ubiquitin-dependent pathway in the dark. Subsequently, the MdCOP1-1 and MdCOP1-2 genes were isolated from apple fruit peel and were functionally characterized in the Arabidopsis (Arabidopsis thaliana) cop1-4 mutant. Yeast (Saccharomyces cerevisiae) two-hybrid, bimolecular fluorescence complementation, and coimmunoprecipitation assays showed that MdMYB1 interacts with the MdCOP1 proteins. Furthermore, in vitro and in vivo experiments indicated that MdCOP1s are necessary for the ubiquitination and degradation of MdMYB1 protein in the dark and are therefore involved in the light-controlled stability of the MdMYB1 protein. Finally, a viral vector-based transformation approach demonstrated that MdCOP1s negatively regulate the peel coloration of apple fruits by modulating the degradation of the MdMYB1 protein. Our findings provide new insight into the mechanism by which light controls anthocyanin accumulation and red fruit coloration in apple and even other plant species.
BMC Plant Biology | 2012
Xiao-Ming Feng; Qiang Zhao; Ling-Ling Zhao; Yu Qiao; Xing-Bin Xie; Hui-Feng Li; Yu-Xin Yao; Chun-Xiang You; Yu-Jin Hao
BackgroundPlant growth is greatly affected by low temperatures, and the expression of a number of genes is induced by cold stress. Although many genes in the cold signaling pathway have been identified in Arabidopsis, little is known about the transcription factors involved in the cold stress response in apple.ResultsHere, we show that the apple bHLH (basic helix-loop-helix) gene MdCIbHLH1 (Cold-Induced bHLH1), which encodes an ICE-like protein, was noticeably induced in response to cold stress. The MdCIbHLH1 protein specifically bound to the MYC recognition sequences in the AtCBF3 promoter, and MdCIbHLH1 overexpression enhanced cold tolerance in transgenic Arabidopsis. In addition, the MdCIbHLH1 protein bound to the promoters of MdCBF2 and favorably contributed to cold tolerance in transgenic apple plants by upregulating the expression of MdCBF2 through the CBF (C-repeat-binding factor) pathway. Our findings indicate that MdCIbHLH1 functions in stress tolerance in different species. For example, ectopic MdCIbHLH1 expression conferred enhanced chilling tolerance in transgenic tobacco. Finally, we observed that cold induces the degradation of the MdCIbHLH1 protein in apple and that this degradation was potentially mediated by ubiquitination and sumoylation.ConclusionsBased on these findings, MdCIbHLH1 encodes a transcription factor that is important for the cold tolerance response in apple.
Journal of Plant Physiology | 2012
Xiu-Hong An; Yi Tian; Ke-Qin Chen; Xiao-Fei Wang; Yu-Jin Hao
The abundance of anthocyanins and proanthocyanins in apples is tightly regulated by three classes of regulatory factors, MYB, bHLH and WD40 proteins, only some of which have been previously identified. In this study, we identified an apple WD40 protein (MdTTG1) that promotes the accumulation of anthocyanins. The biosynthetic genes required downstream in the flavonoid pathway were up-regulated when MdTTG1 was over-expressed in Arabidopsis. Consistent with its role as a transcriptional regulator, an MdTTG1-GFP fusion protein was observed only in the nucleus. We assayed the expression patterns of this gene in different organs and found that they were positively correlated with anthocyanin accumulation in the apple. Yeast two-hybrid and bimolecular fluorescence complementation assays demonstrated that MdTTG1 interacted with bHLH transcription factors (TFs) but not MYB protein, whereas bHLH was known to interact with MYB in apples. However, based on a ChIP assay, MdTTG1 does not appear to bind to the promoter of the anthocyanin biosynthetic genes MdDFR and MdUFGT. Taken together, these results suggest that the apple WD40 protein MdTTG1 interacts with bHLH but not MYB proteins to regulate anthocyanin accumulation.
Plant and Cell Physiology | 2015
Xiu-Hong An; Yi Tian; Ke-Qin Chen; Xiao-Juan Liu; Dan-Dan Liu; Xing-Bin Xie; Cun-Gang Cheng; Pei-Hua Cong; Yu-Jin Hao
Anthocyanin and proanthocyanidin (PA) are important secondary metabolites and beneficial to human health. Their biosynthesis is induced by jasmonate (JA) treatment and regulated by MYB transcription factors (TFs). However, which and how MYB TFs regulate this process is largely unknown in apple. In this study, MdMYB9 and MdMYB11 which were induced by methyl jasmonate (MeJA) were functionally characterized. Overexpression of MdMYB9 or MdMYB11 promoted not only anthocyanin but also PA accumulation in apple calluses, and the accumulation was further enhanced by MeJA. Subsequently, yeast two-hybrid, pull-down and bimolecular fluorescence complementation assays showed that both MYB proteins interact with MdbHLH3. Moreover, Jasmonate ZIM-domain (MdJAZ) proteins interact with MdbHLH3. Furthermore, chromatin immunoprecipitation-quantitative PCR and yeast one-hybrid assays demonstrated that both MdMYB9 and MdMYB11 bind to the promoters of ANS, ANR and LAR, whereas MdbHLH3 is recruited to the promoters of MdMYB9 and MdMYB11 and regulates their transcription. In addition, transient expression assays indicated that overexpression of MdJAZ2 inhibits the recruitment of MdbHLH3 to the promoters of MdMYB9 and MdMYB11. Our findings provide new insight into the mechanism of how MeJA regulates anthocyanin and PA accumulation in apple.
Plant Physiology | 2016
Da-Gang Hu; Cui-Hui Sun; Qi-Jun Ma; Chun-Xiang You; Lailiang Cheng; Yu-Jin Hao
An MYB transcription factor influences organ coloration and acidity by activating the expression of the genes encoding vacuolar proton pump subunits as well as anthocyanin transporters and malate transporters. Tonoplast transporters, including proton pumps and secondary transporters, are essential for plant cell function and for quality formation of fleshy fruits and ornamentals. Vacuolar transport of anthocyanins, malate, and other metabolites is directly or indirectly dependent on the H+-pumping activities of vacuolar H+-ATPase (VHA) and/or vacuolar H+-pyrophosphatase, but how these proton pumps are regulated in modulating vacuolar transport is largely unknown. Here, we report a transcription factor, MdMYB1, in apples that binds to the promoters of two genes encoding the B subunits of VHA, MdVHA-B1 and MdVHA-B2, to transcriptionally activate its expression, thereby enhancing VHA activity. A series of transgenic analyses in apples demonstrates that MdMYB1/10 controls cell pH and anthocyanin accumulation partially by regulating MdVHA-B1 and MdVHA-B2. Furthermore, several other direct target genes of MdMYB10 are identified, including MdVHA-E2, MdVHP1, MdMATE-LIKE1, and MdtDT, which are involved in H+-pumping or in the transport of anthocyanins and malates into vacuoles. Finally, we show that the mechanism by which MYB controls malate and anthocyanin accumulation in apples also operates in Arabidopsis (Arabidopsis thaliana). These findings provide novel insights into how MYB transcription factors directly modulate the vacuolar transport system in addition to anthocyanin biosynthesis, consequently controlling organ coloration and cell pH in plants.
Physiologia Plantarum | 2016
Da-Gang Hu; Qi-Jun Ma; Cui-Hui Sun; Mei-Hong Sun; Chun-Xiang You; Yu-Jin Hao
Soil salinity hinders the growth of most higher plants and becomes a gradually increasing threat to the agricultural production of such crops as the woody plant apple. In this study, a calcineurin B-like protein (CBL)-interacting protein kinase, MdCIPK24-LIKE1 (named as MdSOS2L1), was identified. Quantitative real-time polymerase chain reaction (qRT-PCR) assay revealed that the expression of MdSOS2L1 was upregulated by CaCl2 . Yeast two-hybrid (Y2H) assay and transiently transgenic analysis demonstrated that the MdSOS2L1 protein kinase physically interacted with MdCBL1, MdCBL4 and MdCBL10 proteins to increase salt tolerance in apple. Furthermore, iTRAQ proteome combined with liquid chromatography-tandem mass spectrometry (LC/MS) analysis found that several proteins, which are involved in reactive oxygen species (ROS) scavenging, procyanidin biosynthesis and malate metabolism, were induced in MdSOS2L1-overexpressing apple plants. Subsequent studies have shown that MdSOS2L1 increased antioxidant metabolites such as procyanidin and malate to improve salt tolerance in apple and tomato. In summary, our studies provide a mechanism in which SOS2L1 enhances the salt stress tolerance in apple and tomato.
Plant Cell Tissue and Organ Culture | 2013
Chao Sun; Qiang Zhao; Dan–Dan Liu; Chun-Xiang You; Yu-Jin Hao
The microRNA miR156 is involved in the regulation of plant growth and development by specifically restricting the transcripts of target genes. In this study, the Md-miR156h gene and its target cDNA fragments, specifically, MdSPL2a-b, MdSPL4, MdSPL6a-g, MdSPL9a-b, MdSPL13a-e and MdSPL15, were isolated from the apple cultivar ‘Gala’. Phylogenetic analysis showed that 18 MdSPL genes were putative targets of miR156. Subsequently, the expression construct p35S:Md-miR156h was created and transformed into Arabidopsis plants. Expression analysis showed that Md-miR156h transcripts and mature miR156 accumulation increased, while its target transcripts AtSPL9 and AtSPL15 were downregulated in transgenic Arabidopsis plants. As a result, the transgenic plants exhibited an extended juvenile phase, increased numbers of leaves, short siliques and the partial abortion of seeds compared with the WT control plants. These results demonstrate that miR156 and its target SPL genes are involved in various developmental processes, especially flower development, and miR156 mediates a conserved post-transcriptional regulation pathway in the apple and Arabidopsis.
Plant Cell Reports | 2013
Yuan-Yuan Li; Ke Mao; Cheng Zhao; Xian-Yan Zhao; Rui-Fen Zhang; Hua-Lei Zhang; Huai-Rui Shu; Yu-Jin Hao
Key messageMdCRY2 was isolated from apple fruit skin, and its function was analyzed in MdCRY2 transgenic Arabidopsis. The interaction between MdCRY2 and AtCOP1 was found by yeast two-hybrid and BiFC assays.AbstractCryptochromes are blue/ultraviolet-A (UV-A) light receptors involved in regulating various aspects of plant growth and development. Investigations of the structure and functions of cryptochromes in plants have largely focused on Arabidopsis (Arabidopsis thaliana), tomato (Solanum lycopersicum), pea (Pisum sativum), and rice (Oryza sativa). However, no data on the function of CRY2 are available in woody plants. In this study, we isolated a cryptochrome gene, MdCRY2, from apple (Malus domestica). The deduced amino acid sequences of MdCRY2 contain the conserved N-terminal photolyase-related domain and the flavin adenine dinucleotide (FAD) binding domain, as well as the C-terminal DQXVP-acidic-STAES (DAS) domain. Relationship analysis indicates that MdCRY2 shows the highest similarity to the strawberry FvCRY protein. The expression of MdCRY2 is induced by blue/UV-A light, which represents a 48-h circadian rhythm. To investigate the function of MdCRY2, we overexpressed the MdCRY2 gene in a cry2 mutant and wild type (WT) Arabidopsis, assessed the phenotypes of the resulting transgenic plants, and found that MdCRY2 functions to regulate hypocotyl elongation, root growth, flower initiation, and anthocyanin accumulation. Furthermore, we examined the interaction between MdCRY2 and AtCOP1 using a yeast two-hybrid assay and a bimolecular fluorescence complementation assay. These data provide functional evidence for a role of blue/UV-A light-induced MdCRY2 in controlling photomorphogenesis in apple.
Horticulture research | 2017
Jian-Ping An; Feng-Jia Qu; Ji-Fang Yao; Xiao-Na Wang; Chun-Xiang You; Xiao-Fei Wang; Yu-Jin Hao
The basic leucine zipper (bZIP) transcription factor HY5 plays a multifaceted role in plant growth and development. Here the apple MdHY5 gene was cloned based on its homology with Arabidopsis HY5. Expression analysis demonstrated that MdHY5 transcription was induced by light and abscisic acid treatments. Electrophoretic mobility shift assays and transient expression assays subsequently showed that MdHY5 positively regulated both its own transcription and that of MdMYB10 by binding to E-box and G-box motifs, respectively. Furthermore, we obtained transgenic apple calli that overexpressed the MdHY5 gene, and apple calli coloration assays showed that MdHY5 promoted anthocyanin accumulation by regulating expression of the MdMYB10 gene and downstream anthocyanin biosynthesis genes. In addition, the transcript levels of a series of nitrate reductase genes and nitrate uptake genes in both wild-type and transgenic apple calli were detected. In association with increased nitrate reductase activities and nitrate contents, the results indicated that MdHY5 might be an important regulator in nutrient assimilation. Taken together, these results indicate that MdHY5 plays a vital role in anthocyanin accumulation and nitrate assimilation in apple.
Plant Physiology and Biochemistry | 2016
Jian-Ping An; Hao-Hao Li; Lai-Qing Song; Ling Su; Xin Liu; Chun-Xiang You; Xiao-Fei Wang; Yu-Jin Hao
The basic helix-loop-helix (bHLH) Leu zipper transcription factor MYC2 is an important regulator in the Jasmonic acid (JA) signaling pathway. In this study, the apple MdMYC2 gene was isolated and cloned on the basis of its homology with Arabidopsis thaliana MYC2. Quantitative real time PCR (qRT-PCR) analysis demonstrated that MdMYC2 transcripts were induced by Methyl Jasmonate (MeJA) treatment and wounding. The MdMYC2 protein interacted with itself and bound the G-Box motif of the AtJAZ3 gene. MdMYC2 interacted with the MdJAZ2 protein, which is a repressor protein in the JA signaling pathway. Furthermore, we obtained transgenic apple calli that either overexpressed or suppressed the MdMYC2 gene. Expression analysis with qRT-PCR demonstrated that the transcript levels of JA-regulated anthocyanin biosynthetic genes, such as MdDFR, MdUF3GT, MdF3H and MdCHS, were markedly up-regulated in the MdMYC2 overexpressing calli and down-regulated in the suppressing calli compared with the WT control. As a result, the overexpressing calli produced more anthocyanin, and the suppressing calli produced less. Finally, the MdMYC2 gene was ectopically expressed in Arabidopsis. Both phenotypic investigation and expression analysis demonstrated that the MdMYC2 transgenic Arabidopsis lines were more sensitive to MeJA than the WT control. Together, these results indicate that the apple MdMYC2 gene plays a vital role in the JA response.