Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daan Hein Alsem is active.

Publication


Featured researches published by Daan Hein Alsem.


Science | 2008

Tough, Bio-Inspired Hybrid Materials

Etienne Munch; Maximimilan E. Launey; Daan Hein Alsem; Eduardo Saiz; Antoni P. Tomsia; Robert O. Ritchie

The notion of mimicking natural structures in the synthesis of new structural materials has generated enormous interest but has yielded few practical advances. Natural composites achieve strength and toughness through complex hierarchical designs that are extremely difficult to replicate synthetically. We emulate natures toughening mechanisms by combining two ordinary compounds, aluminum oxide and polymethyl methacrylate, into ice-templated structures whose toughness can be more than 300 times (in energy terms) that of their constituents. The final product is a bulk hybrid ceramic-based material whose high yield strength and fracture toughness [∼200 megapascals (MPa) and ∼30 MPa·m1/2] represent specific properties comparable to those of aluminum alloys. These model materials can be used to identify the key microstructural features that should guide the synthesis of bio-inspired ceramic-based composites with unique strength and toughness.


Journal of the Royal Society Interface | 2010

A novel biomimetic approach to the design of high-performance ceramic–metal composites

Maximilien E. Launey; Etienne Munch; Daan Hein Alsem; Eduardo Saiz; Antoni P. Tomsia; Robert O. Ritchie

The prospect of extending natural biological design to develop new synthetic ceramic–metal composite materials is examined. Using ice-templating of ceramic suspensions and subsequent metal infiltration, we demonstrate that the concept of ordered hierarchical design can be applied to create fine-scale laminated ceramic–metal (bulk) composites that are inexpensive, lightweight and display exceptional damage-tolerance properties. Specifically, Al2O3/Al–Si laminates with ceramic contents up to approximately 40 vol% and with lamellae thicknesses down to 10 µm were processed and characterized. These structures achieve an excellent fracture toughness of 40 MPa√m at a tensile strength of approximately 300 MPa. Salient toughening mechanisms are described together with further toughening strategies.


Science | 2016

Origin and hysteresis of lithium compositional spatiodynamics within battery primary particles

Jongwoo Lim; Yiyang Li; Daan Hein Alsem; Hongyun So; Sang-Chul Lee; Peng Bai; Daniel A. Cogswell; Xuzhao Liu; Norman Jin; Y. Yu; Norman Salmon; David A. Shapiro; Martin Z. Bazant; Tolek Tyliszczak; William C. Chueh

Watching batteries fail Rechargeable batteries lose capacity in part because of physical changes in the electrodes caused by electrochemical cycling. Lim et al. track the reaction dynamics of an electrode material, LiFePO4, by measuring the relative concentrations of Fe(II) and Fe(III) in it by means of high-resolution x-ray absorption spectrometry (see the Perspective by Schougaard). The exchange current density is then mapped for Li+ insertion and removal. At fast cycling rates, solid solutions form as Li+ is removed and inserted. However, at slow cycling rates, nanoscale phase separation occurs within battery particles, which eventually shortens battery life. Science, this issue p. 566; see also p. 543 X-ray microscopy shows the nanoscale evolution of the composition and reaction rate inside a Li-ion battery during cycling. The kinetics and uniformity of ion insertion reactions at the solid-liquid interface govern the rate capability and lifetime, respectively, of electrochemical devices such as Li-ion batteries. Using an operando x-ray microscopy platform that maps the dynamics of the Li composition and insertion rate in LixFePO4, we found that nanoscale spatial variations in rate and in composition control the lithiation pathway at the subparticle length scale. Specifically, spatial variations in the insertion rate constant lead to the formation of nonuniform domains, and the composition dependence of the rate constant amplifies nonuniformities during delithiation but suppresses them during lithiation, and moreover stabilizes the solid solution during lithiation. This coupling of lithium composition and surface reaction rates controls the kinetics and uniformity during electrochemical ion insertion.


Journal of Applied Physics | 2007

Very high-cycle fatigue failure in micron-scale polycrystalline silicon films: Effects of environment and surface oxide thickness

Daan Hein Alsem; R. Timmerman; Brad Lee Boyce; Eric A. Stach; J.Th.M. De Hosson; Robert O. Ritchie

Fatigue failure in micron-scale polycrystalline silicon structural films, a phenomenon that is not observed in bulk silicon, can severely impact the durability and reliability of microelectromechanical system devices. Despite several studies on the very high-cycle fatigue behavior of these films (up to 1012cycles), there is still an on-going debate on the precise mechanisms involved. We show here that for devices fabricated in the multiuser microelectromechanical system process (MUMPs) foundry and Sandia Ultra-planar, Multi-level MEMS Technology (SUMMiT V™) process and tested under equi-tension/compression loading at ∼40kHz in different environments, stress-lifetime data exhibit similar trends in fatigue behavior in ambient room air, shorter lifetimes in higher relative humidity environments, and no fatigue failure at all in high vacuum. The transmission electron microscopy of the surface oxides in the test samples shows a four- to sixfold thickening of the surface oxide at stress concentrations after fat...


Applied Physics Letters | 2005

Fatigue failure in thin-film polycrystalline silicon is due to subcritical cracking within the oxide layer

Daan Hein Alsem; Christopher L. Muhlstein; Eric A. Stach; Robert O. Ritchie

It has been established that microelectromechanical systems created from polycrystalline silicon thin films are subject to cyclic fatigue. Prior work by the authors has suggested that although bulk silicon is not susceptible to fatigue failure in ambient air, fatigue in micron-scale silicon is a result of a “reaction-layer” process, whereby high stresses induce a thickening of the post-release oxide at stress concentrations such as notches, which subsequently undergoing moisture-assisted cracking. However, there exists some controversy regarding the post-release oxide thickness of the samples used in the prior study. In this letter, we present data from devices from a more recent fabrication run that confirm our prior observations. Additionally, new data from tests in high vacuum show that these devices do not fatigue when oxidation and moisture are suppressed. Each of these observations lends credence to the “reaction-layer” mechanism.


Microscopy and Microanalysis | 2013

In Situ TEM Study of Catalytic Nanoparticle Reactions in Atmospheric Pressure Gas Environment

Huolin L. Xin; Kai-Yang Niu; Daan Hein Alsem; Haimei Zheng

The understanding of solid-gas interactions has been greatly advanced over the past decade on account of the availability of high-resolution transmission electron microscopes (TEMs) equipped with differentially pumped environmental cells. The operational pressures in these differentially pumped environmental TEM (DP-ETEM) instruments are generally limited up to 20 mbar. Yet, many industrial catalytic reactions are operated at pressures equal or higher than 1 bar-50 times higher than that in the DP-ETEM. This poses limitations for in situ study of gas reactions through ETEM and advances are needed to extend in situ TEM study of gas reactions to the higher pressure range. Here, we present a first series of experiments using a gas flow membrane cell TEM holder that allows a pressure up to 4 bar. The built-in membrane heaters enable reactions at a temperature of 95-400°C with flowing reactive gases. We demonstrate that, using a conventional thermionic TEM, 2 Å atomic fringes can be resolved with the presence of 1 bar O2 gases in an environmental cell and we show real-time observation of the Kirkendall effect during oxidation of cobalt nanocatalysts.


Microscopy and Microanalysis | 2014

Direct Visualization of Solid Electrolyte Interphase Formation in Lithium-Ion Batteries with In Situ Electrochemical Transmission Electron Microscopy

Raymond R. Unocic; Xiao-Guang Sun; Robert L. Sacci; Leslie A. Adamczyk; Daan Hein Alsem; Sheng Dai; Nancy J. Dudney; Karren L. More

Complex, electrochemically driven transport processes form the basis of electrochemical energy storage devices. The direct imaging of electrochemical processes at high spatial resolution and within their native liquid electrolyte would significantly enhance our understanding of device functionality, but has remained elusive. In this work we use a recently developed liquid cell for in situ electrochemical transmission electron microscopy to obtain insight into the electrolyte decomposition mechanisms and kinetics in lithium-ion (Li-ion) batteries by characterizing the dynamics of solid electrolyte interphase (SEI) formation and evolution. Here we are able to visualize the detailed structure of the SEI that forms locally at the electrode/electrolyte interface during lithium intercalation into natural graphite from an organic Li-ion battery electrolyte. We quantify the SEI growth kinetics and observe the dynamic self-healing nature of the SEI with changes in cell potential.


IEEE\/ASME Journal of Microelectromechanical Systems | 2009

Wear of Polysilicon Surface Micromachines Operated in High Vacuum

Shannon J. Timpe; Daan Hein Alsem; David A. Hook; Michael T. Dugger; K. Komvopoulos

The evolution of wear at sidewall surfaces of polysilicon microelectromechanical systems was investigated in high vacuum under controlled normal load and sliding speed conditions. The static adhesion force was used as an indicator of the changes in wear characteristics occurring during oscillatory sliding contact. Measurements of the static adhesion force as a function of sliding cycles and scanning electron microscopy observations of micromachines from the same batch process subjected to nominally identical testing conditions revealed two distinctly different tribological patterns, namely, low-adhesion/high-wear behavior and high-adhesion/low-wear behavior. The static adhesion force and wear behavior were found to be in direct correlation with the micromachine operational lifetime. Transmission electron microscopy, selected area diffraction, and energy dispersive X-ray spectroscopy yielded insight into the origin, microstructure, and composition of wear debris and agglomerates adhered onto the sliding surfaces. Results demonstrate a strong dependence of micromachine operational life on the removal of the native oxide film and the organic monolayer coating as well as the formation of agglomerates consisting of organic coating material and wear debris.


IEEE\/ASME Journal of Microelectromechanical Systems | 2012

Sidewall Adhesion and Sliding Contact Behavior of Polycrystalline Silicon Microdevices Operated in High Vacuum

Daan Hein Alsem; Hua Xiang; Robert O. Ritchie; K. Komvopoulos

The reliability and performance of contact-mode microelectromechanical systems (MEMS) depend strongly on the tribological properties of contact interfaces. Knowledge of the dominant friction and wear mechanisms at submicrometer length scales is therefore of paramount importance to the design of MEMS devices with contact interfaces. The objective of this study was to examine changes in the adhesion behavior and morphology of sliding sidewall surfaces of polycrystalline silicon MEMS devices operated in high vacuum (~105 torr) and under low apparent contact pressures (0.1-18 kPa) and correlate these changes to the operation lifetime. Sidewall adhesion increased with applied contact pressure. Typically, a twofold to fourfold increase in side wall adhesion was measured upon cessation of the device operation (typically, ~106 sliding cycles) due to the increase of the static friction force above the restoring force available by the device. Scanning electron microscopy (SEM) revealed very small amounts of ultrafine wear debris (10-140 nm) on the sidewall surfaces of about half of the tested devices, without discernible changes in the surface topography. Cross-sectional transmission electron microscopy (TEM) showed that sliding did not cause the removal of the silicon oxide film (5-13 nm in average thickness) from the sidewall surfaces. Atomic force microscopy (AFM) indicated that sliding contact was confined at the top of a few elevated ridges on the sidewall surfaces, resulting in nanoscale wear that smoothened locally the surfaces. SEM, TEM, and AFM results of this study show that the tribological properties of contact-mode MEMS devices operating in high vacuum are controlled by only a few nanoscopic contacts, which depend on the local nanotopography of the interacting surfaces.


Microscopy and Microanalysis | 2011

In-situ TEM Characterization of Electrochemical Processes in Energy Storage Systems

Raymond R. Unocic; Leslie A. Adamczyk; Nancy J. Dudney; Daan Hein Alsem; Norman Salmon; Karren L. More

The accelerated development of materials for utilization in electrical energy storage systems will hinge critically upon our understanding of how interfaces (particularly electrode-electrolyte solid liquid interfaces) control the physical and electrochemical energy conversion processes in energy storage systems. A prime example is found in Lt ion-based battery systems, where a passive multiphase layer grows at the electrode/electrolyte interface due to the decomposition of the liquid electrolyte [ l]. Once formed, this solid electrolyte interphase (SEI) protects the active electrode materials from degradation and also regulates the transport and intercalation of Lt ions during battery charge/discharge cycling [2]. Due to the dynamically evolving nature of this nm-scaled interface, it has proven difficult to design experiments that will not only elucidate the fundamental mechanisms controlling SEI nucleation and growth, but will enable the SEI microstructural and chemical evolution as a function of charge/discharge cycling to be monitored in real time.

Collaboration


Dive into the Daan Hein Alsem's collaboration.

Top Co-Authors

Avatar

Robert O. Ritchie

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Michael T. Dugger

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karren L. More

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Raymond R. Unocic

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antoni P. Tomsia

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Etienne Munch

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Leslie A. Adamczyk

Oak Ridge National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge