Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dae Sik Jang is active.

Publication


Featured researches published by Dae Sik Jang.


Journal of Agricultural and Food Chemistry | 2011

Metabolomic Approach for Age Discrimination of Panax ginseng Using UPLC-Q-Tof MS

Nahyun Kim; Kemok Kim; Byeong Yeob Choi; DongHyuk Lee; Yoo-Soo Shin; Kyong-Hwan Bang; Seon-Woo Cha; Jae Won Lee; Hyung-Kyoon Choi; Dae Sik Jang; Dongho Lee

An ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-Tof MS)-based metabolomic technique was applied for metabolite profiling of 60 Panax ginseng samples aged from 1 to 6 years. Multivariate statistical methods such as principal component analysis and hierarchical clustering analysis were used to compare the derived patterns among the samples. The data set was subsequently applied to various metabolite selection methods for sophisticated classification with the optimal number of metabolites. The results showed variations in accuracy among the classification methods for the samples of different ages, especially for those aged 4, 5, and 6 years. This proposed analytical method coupled with multivariate analysis is fast, accurate, and reliable for discriminating the cultivation ages of P. ginseng samples and is a potential tool to standardize quality control in the P. ginseng industry.


Biochemical and Biophysical Research Communications | 2010

Extract of the aerial parts of Aster koraiensis reduced development of diabetic nephropathy via anti-apoptosis of podocytes in streptozotocin-induced diabetic rats.

Eunjin Sohn; Jung Hyun Kim; Chan-Sik Kim; Young S. Kim; Dae Sik Jang; Jin Sook Kim

Advanced glycation end products (AGEs) is produced from glycolysis in vivo, which may result in diabetic nephropathy. Podocyte loss has been implicated in the development of diabetic nephropathy. The aim of this study was to investigate the protective effects of Aster koraiensis extract (AKE), on the damage of renal podocytes in streptozotocin (STZ)-induced diabetic rats. AKE (100, 200mg/kg per day) was given to diabetic rats for 13weeks. Blood glucose, glycated haemoglobin (HbA1c), proteinuria and albuminuria were examined. Kidney histopathology, AGEs accumulation, apoptosis, and expression of Bax and Bcl-2 also were examined. In 20-week-old STZ-induced diabetic rats, severe hyperglycemia was developed, and proteinuria and albuminuria were markedly increased. TUNEL-positive signals were highly detected in glomeruli of STZ-induced diabetic rats. However, AKE reduced proteinuria and albuminuria in diabetic rats. AKE prevented AGEs deposition and podocyte apoptosis. Expression of Bax and Bcl-2 protein were restored by AKE treatment in the renal cortex. These results suggested that AKE has an inhibitory effect of AGE accumulation and anti-apoptotic effect in the glomeruli of diabetic rat. AKE could be beneficial in preventing the progression of diabetic nephropathy.


Toxicology and Applied Pharmacology | 2010

Puerarin suppresses AGEs-induced inflammation in mouse mesangial cells: A possible pathway through the induction of heme oxygenase-1 expression

Ki Mo Kim; Dong Ho Jung; Dae Sik Jang; Young Sook Kim; Jong Min Kim; Ha-Na Kim; Young-Joon Surh; Jin Sook Kim

Puerarin is a natural product isolated from Puerarin lobata and has various pharmacological effects, including anti-hyperglycemic and anti-allergic properties. In the present study, we investigated the effect of puerarin against advanced glycation end products (AGEs)-induced inflammation in mouse mesangial cells. Puerarin acts by inducing the expression of heme oxygenase-1 (HO-1) in a dose- and time-dependent manner. Puerarin was able to enhance phosphorylation of protein kinase C (PKC) delta, but not PKC alpha/beta II, in a time-dependent manner. Induction of HO-1 expression by puerarin was suppressed by GF109203X, a general inhibitor of PKC, and by rottlerin, a specific inhibitor of PKC delta. However, induction was not suppressed by Gö6976, a selective inhibitor for PKC alpha/beta II. Additionally, the knockdown of endogenous PKC delta by small interfering RNA (siRNA) resulted in the inhibition of HO-1 expression and Akt phosphorylation. Puerarin increased antioxidant response element (ARE)-Luciferase activity in a dose- and time-dependent manner in transfected mouse mesangial cells. Mutation of the ARE sequence abolished puerarin-induced HO-1 expression. Furthermore, puerarin treatments resulted in a marked increase in NF-E2 related factor-2 (Nrf-2) translocation, leading to up-regulation of HO-1 expression. However, transfection of Nrf-2 specific siRNA abolished HO-1 expression. Pretreatment with puerarin inhibited the expressions of COX-2, MMP-2 and MMP-9. But, these effects were reversed by ZnPP, an inhibitor of HO-1. Taken together, our results demonstrate that puerarin-induced expression of HO-1 is mediated by the PKC delta-Nrf-2-HO-1 pathway and inhibits N-carboxymethyllysine (CML)-induced inflammation in mouse mesangial cells.


Pharmacology, Biochemistry and Behavior | 2014

Ameliorating effect of spinosin, a C-glycoside flavonoid, on scopolamine-induced memory impairment in mice.

In Ho Jung; Hyung Eun Lee; Se Jin Park; Young Je Ahn; Guyoung Kwon; Hyun Woo; So Young Lee; Ju Sun Kim; Yeong-Woo Jo; Dae Sik Jang; Sam Sik Kang; Jong Hoon Ryu

Spinosin is a C-glycoside flavonoid isolated from the seeds of Zizyphus jujuba var. spinosa. This study investigated the effect of spinosin on cholinergic blockade-induced memory impairment in mice. Behavioral tests were conducted using the passive avoidance, Y-maze, and Morris water maze tasks to evaluate the memory-ameliorating effect of spinosin. Spinosin (10 or 20mg/kg, p.o.) significantly ameliorated scopolamine-induced cognitive impairment in these behavioral tasks with a prolonged latency time in the passive avoidance task, an increased percentage of spontaneous alternation in the Y-maze task and a lengthened swimming time in target quadrant in the Morris water maze task. In addition, a single administration of spinosin in normal naïve mice also enhanced the latency time in the passive avoidance task. To identify the mechanism of the memory-ameliorating effect of spinosin, receptor antagonism analysis and Western blotting were performed. The ameliorating effect of spinosin on scopolamine-induced memory impairment was significantly antagonized by a sub-effective dose (0.5mg/kg, i.p.) of 8-hydroxy-2-(di-N-propylamino)tetralin, a 5-HT1A receptor agonist. In addition, spinosin significantly increased the expression levels of phosphorylated extracellular signal-regulated kinases and cAMP response element-binding proteins in the hippocampus. Taken together, these results indicate that the memory-ameliorating effect of spinosin may be, in part, due to the serotonergic neurotransmitter system, and that spinosin may be useful for the treatment of cognitive dysfunction in diseases such as Alzheimers disease.


Evidence-based Complementary and Alternative Medicine | 2011

KIOM-79, an Inhibitor of AGEs–Protein Cross-linking, Prevents Progression of Nephropathy in Zucker Diabetic Fatty Rats

Young S. Kim; Jung Hyun Kim; Chan-Sik Kim; Eun Jin Sohn; Yun Mi Lee; Il-Ha Jeong; Hyojun Kim; Dae Sik Jang; Jin Sook Kim

Advanced glycation end products (AGEs) have been implicated in the development of diabetic complications, including diabetic nephropathy. KIOM-79, an 80% ethanolic extract obtained from parched Puerariae Radix, gingered Magnolia Cortex, Glycyrrhiza Radix and Euphorbia Radix, was investigated for its effects on the development of renal disease in Zucker diabetic fatty rats, an animal model of type 2 diabetes. In vitro inhibitory effect of KIOM-79 on AGEs cross-linking was examined by enzyme-linked immunosorbent assay (ELISA). KIOM-79 (50 mg/kg/day) was given to Zucker diabetic fatty rats for 13 weeks. Body and kidney weight, blood glucose, glycated hemoglobin, urinary albumin and creatinine excretions were monitored. Kidney histopathology, collagen accumulation, fibrinogen and transforming growth factor-beta 1 (TGF-β1) expression were also examined. KIOM-79 reduced blood glucose, kidney weight, histologic renal damage and albuminuria in Zucker diabetic fatty rats. KIOM-79 prevented glomerulosclerosis, tubular degeneration, collagen deposition and podocyte apoptosis. In the renal cortex, TGF-β1, fibronectin mRNA and protein were significantly reduced by KIOM-79 treatment. KIOM-79 reduces AGEs accumulation in vivo, AGE–protein cross-linking and protein oxidation. KIOM-79 could be beneficial in preventing the progression of diabetic glomerularsclerosis in type 2 diabetic rats by attenuating AGEs deposition in the glomeruli.


Archives of Pharmacal Research | 2010

Constituents of the flowers of Platycodon grandiflorum with inhibitory activity on advanced glycation end products and rat lens aldose reductase in vitro

Dae Sik Jang; Yun Mi Lee; Il Ha Jeong; Jin Sook Kim

In an ongoing project directed toward the discovery of novel treatments for diabetic complications from traditional herbal medicines, fifteen compounds, apigenin (1), apigenin-7-O-β-d-glucopyranoside (2), apigenin-7-O-(6″-O-acetyl)-β-d-glucopyranoside (3), luteolin (4), luteolin-7-O-β-d-glucopyranoside (5), luteolin-7-O-(6″-O-acetyl)-β-d-glucopyranoside (6), isorhamnetin-3-Oneohesperidoside (7), 4-O-caffeoylquinic acid (8), chlorogenic acid methyl ester (9), 4-O-β-d-glucopyranosylcaffeic acid (10), lobetyolin (11), cordifolioidyne C (12), isomultiflorenyl acetate (13), β-sitosterol glucoside (14), and α-spinosterol (15), were isolated from an EtOAc-soluble fraction of the flowers of Platycodon grandiflorum (balloonflower; Campanulaceae). The structures of the compounds were identified by physical and spectroscopic methods, as well as by comparison of their data with literature values. All the isolates were evaluated in vitro for inhibitory activity on the formation of advanced glycation end products and rat lens aldose reductase.


Biochemical and Biophysical Research Communications | 2014

Inhibition of estrogen signaling through depletion of estrogen receptor alpha by ursolic acid and betulinic acid from Prunella vulgaris var. lilacina

Hye-In Kim; Fu-Shi Quan; Ji-Eun Kim; Na-Rae Lee; Hyun Ji Kim; Su Ji Jo; Chae-Min Lee; Dae Sik Jang; Kyung-Soo Inn

Extracts of Prunella vulgaris have been shown to exert antiestrogenic effects. To identify the compounds responsible for these actions, we isolated the constituents of P. vulgaris and tested their individual antiestrogenic effects. Rosmarinic acid, caffeic acid, ursolic acid (UA), oleanolic acid, hyperoside, rutin and betulinic acid (BA) were isolated from the flower stalks of P. vulgaris var. lilacina Nakai (Labiatae). Among these constituents, UA and BA showed significant antiestrogenic effects, measured as a decrease in the mRNA level of GREB1, an estrogen-responsive protein; the effects of BA were stronger than those of UA. UA and BA were capable of suppressing estrogen response element (ERE)-dependent luciferase activity and expression of estrogen-responsive genes in response to exposure to estradiol, further supporting the suppressive role of these compounds in estrogen-induced signaling. However, neither UA nor BA was capable of suppressing estrogen signaling in cells ectopically overexpressing estrogen receptor α (ERα). Furthermore, both mRNA and protein levels of ERα were reduced by treatment with UA or BA, suggesting that UA and BA inhibit estrogen signaling by suppressing the expression of ERα. Interestingly, both compounds enhanced prostate-specific antigen promoter activity. Collectively, these findings demonstrate that UA and BA are responsible for the antiestrogenic effects of P. vulgaris and suggest their potential use as therapeutic agents against estrogen-dependent tumors.


Journal of Ethnopharmacology | 2013

α-Cyperone, isolated from the rhizomes of Cyperus rotundus, inhibits LPS-induced COX-2 expression and PGE2 production through the negative regulation of NFκB signalling in RAW 264.7 cells

Seung-Hyun Jung; Su Jung Kim; Bo-Gyu Jun; Kyung-Tae Lee; Seon-Pyo Hong; Myung Sook Oh; Dae Sik Jang; Jung-Hye Choi

ETHNOPHARMACOLOGICAL RELEVANCEnThe rhizomes of Cyperus rotundus (Cyperaceae) have been used in Asian traditional medicine for the treatment of several inflammatory diseases. However, the anti-inflammatory effects of α-cyperone, a major active compound of Cyperus rotundus, are poorly understood.nnnMATERIALS AND METHODSnPGE2 and cytokines released from cells were measured using an EIA assay kit. The expression of iNOS, COX-2, TNF-α, and IL-6 was measured by real-time RT-PCR and/or Western blot analysis. A luciferase assay was performed to measure the effect of α-cyperone on NFκB activity.nnnRESULTSnThe n-hexane fraction of the 80% EtOH extract from the rhizomes of Cyperus rotundus was found to inhibit both NO and PGE2 production in RAW 264.7 cells. α-Cyperone isolated from the n-hexane fraction significantly inhibited PGE2 production by suppressing the LPS-induced expression of inducible COX-2 at both the mRNA and the protein levels. In contrast, α-cyperone had little effect on NO production and iNOS expression. Additionally, α-cyperone downregulated the production and mRNA expression of the inflammatory cytokine IL-6. Moreover, treatment with α-cyperone suppressed the transcriptional activity of NFκB and the nuclear translocation of the p65 NFκB subunit in LPS-induced RAW 264.7 cells.nnnCONCLUSIONnThe anti-inflammatory activity of α-cyperone is associated with the down-regulation of COX-2 and IL-6 via the negative regulation of the NFκB pathway in LPS-stimulated RAW 264.7 cells.


Biomolecules & Therapeutics | 2013

Ethanolic Extract of the Seed of Zizyphus jujuba var. spinosa Ameliorates Cognitive Impairment Induced by Cholinergic Blockade in Mice

Hyung Eun Lee; So Young Lee; Ju Sun Kim; Se Jin Park; Jong Min Kim; Young Woo Lee; Jun Man Jung; Dong-Hyun Kim; Bum Young Shin; Dae Sik Jang; Sam Sik Kang; Jong Hoon Ryu

In the present study, we investigated the effect of ethanolic extract of the seed of Zizyphus jujuba var. spinosa (EEZS) on cholinergic blockade-induced memory impairment in mice. Male ICR mice were treated with EEZS. The behavioral tests were conducted using the passive avoidance, the Y-maze, and the Morris water maze tasks. EEZS (100 or 200 mg/kg, p.o.) significantly ameliorated the scopolamine-induced cognitive impairment in our present behavioral tasks without changes of locomotor activity. The ameliorating effect of EEZS on scopolamine-induced memory impairment was significantly reversed by a sub-effective dose of MK-801 (0.0125 mg/kg, s.c.). In addition, single administration of EEZS in normal naïve mouse enhanced latency time in the passive avoidance task. Western blot analysis was employed to confirm the mechanism of memory-ameliorating effect of EEZS. Administration of EEZS (200 mg/kg) increased the level of memory-related signaling molecules, including phosphorylation of extracellular signal-regulated kinase or cAMP response element-binding protein in the hippocampal region. Also, the time-dependent expression level of brain-derived neurotrophic factor by the administration of EEZS was markedly increased from 3 to 9 h. These results suggest that EEZS has memory-ameliorating effect on scopolamine-induced cognitive impairment, which is mediated by the enhancement of the cholinergic neurotransmitter system, in part, via NMDA receptor signaling, and that EEZS would be useful agent against cognitive dysfunction such as Alzheimer’s disease.


European Journal of Pharmacology | 2010

Extract of Cassiae Semen and its major compound inhibit S100b-induced TGF-β1 and fibronectin expression in mouse glomerular mesangial cells

Dong Ho Jung; Young Sook Kim; Nan Hee Kim; Jun Lee; Dae Sik Jang; Jin Sook Kim

Non-enzymatic glycation reactions between reducing sugar and free reactive amino groups of protein lead to the formation of advanced glycation end products, which increase under conditions of aging or diabetes. A previous study showed that extracts of Cassiae Semen (CS), the seed of Cassia tora, had inhibitory activity on advanced glycation end products formation in vitro. To examine the pharmacological effects of a butanol-soluble extract of CS under conditions of diabetic nephropathy, we evaluated the expression of transforming growth factor-beta1 (TGF-beta1) and fibronectin, key mediators of diabetic nephropathy, in mouse glomerular mesangial cells cultured in the presence of S100b (a specific ligand for receptor of advanced glycation end products). CS inhibited S100b-induced TGF-beta1 and fibronectin expression in mouse mesangial cells by suppressing activation of Smad2/3, extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK), and oxidative stress. Moreover, CS suppressed nuclear factor-kappa B (NF-kappaB) activation in S100b-stimulated mouse mesangial cells. To identify the active compounds of CS, three major compounds, rubrofusarin-6-O-beta-d-gentiobioside (CS-A), toralactone-9-O-beta-d-gentiobioside (CS-B), and cassiaside (CS-C), were tested in cells. Of these compounds, CS-A significantly decreased the expression of TGF-beta1 and fibronectin and NF-kappaB DNA binding activity. These findings suggest that CS, especially CS-A, has potential as a preventive agent for advanced glycation end products-related diabetic complications.

Collaboration


Dive into the Dae Sik Jang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jun Lee

Korea Institute of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge