Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daejoong Kim is active.

Publication


Featured researches published by Daejoong Kim.


Journal of Physical Chemistry B | 2010

Competitive entry of sodium and potassium into nanoscale pores

James J. Cannon; Dai Tang; Nahmkeon Hur; Daejoong Kim

We have studied the competitive entry of potassium and sodium into carbon nanotubes using molecular dynamics simulations. Our results demonstrate how a combination of strong sodium hydration coupled with strong potassium-chlorine interaction leads to enhanced potassium selectivity at certain diameters. We detail the reasons behind this, and show how variation of nanotube diameter can cause a switch to sodium selectivity, or even cause a decrease in overall ion entry despite an increase in diameter. These results demonstrate the importance of considering inter-ion dependence in the theoretical study of pore selectivity and show that, with careful design, the practical separation of sodium and potassium is possible using diameter variation alone.


Journal of Physical Chemistry B | 2012

Influence of Ion Size and Charge on Osmosis

James Cannon; Daejoong Kim; Shigeo Maruyama; Junichiro Shiomi

Osmosis is fundamental to many processes, such as in the function of biological cells and in industrial desalination to obtain clean drinking water. The choice of solute in industrial applications of osmosis is highly important in maximizing efficiency and minimizing costs. The macroscale process of osmosis originates from the nanoscale properties of the solvent, and therefore an understanding of the mechanisms of how these properties determine osmotic strength can be highly useful. For this reason, we have undertaken molecular dynamics simulations to systematically study the influence of ion size and charge on the strength of osmosis of water through carbon nanotube membranes. Our results show that strong osmosis occurs under optimum conditions of ion placement near the region of high water density near the membrane wall and of maintenance of a strong water hydration shell around the ions. The results in turn allow greater insight into the origin of the strong osmotic strength of real ions such as NaCl. Finally, in terms of practical simulation, we highlight the importance of avoiding size effects that can occur if the simulation cell is too small.


Materials | 2015

Molecular Dynamics Simulation of the Effect of Angle Variation on Water Permeability through Hourglass-Shaped Nanopores

Dai Tang; Longnan Li; Majid Shahbabaei; Yeong-Eun Yoo; Daejoong Kim

Water transport through aquaporin water channels occurs extensively in cell membranes. Hourglass-shaped (biconical) pores resemble the geometry of these aquaporin channels and therefore attract much research attention. We assumed that hourglass-shaped nanopores are capable of high water permeation like biological aquaporins. In order to prove the assumption, we investigated nanoscale water transport through a model hourglass-shaped pore using molecular dynamics simulations while varying the angle of the conical entrance and the total nanopore length. The results show that a minimal departure from optimized cone angle (e.g., 9° for 30 Å case) significantly increases the osmotic permeability and that there is a non-linear relationship between permeability and the cone angle. The analysis of hydrodynamic resistance proves that the conical entrance helps to reduce the hydrodynamic entrance hindrance. Our numerical and analytical results thus confirm our initial assumption and suggest that fast water transport can be achieved by adjusting the cone angle and length of an hourglass-shaped nanopore.


Journal of Micromechanics and Microengineering | 2013

Evaluation of reciprocating electromagnetic air pumping for portable PEMFC

Kilsung Kwon; Ho Kang; Seongwon Kang; Daejoong Kim

In this paper, we present a proton exchange membrane fuel cell (PEMFC) integrated with an electromagnetic (EM) air pump. The EM air pump provides the PEMFC with air by reciprocating motions of the permanent magnet attached to a flexible membrane. We performed a parametric study to decide the optimal dimensions of the reciprocating EM air pump. The effects of various operating parameters on the EM air pump were investigated with the root-mean-square (RMS) flow rate and current. A core with a higher relative permeability shows better performance. The RMS current linearly increases with the applied voltage and shows no dependence on the frequency. The RMS flow rate also increases with the voltage. The RMS flow rate per power consumption is highest at the frequency around 20 Hz and decreases as the applied voltage increases. When the reciprocating EM air pump was used to supply air to the portable PEMFC, it was found that the power density of the PEMFC increases with the applied voltage and shows the highest performance at the frequency of 10 Hz. We compared the performance of the PEMFC between the flow meter and the EM air pump used as an air supplier. About 81% of the output power using the flow meter was obtained when the EM air pump is operated at the applied voltage of 5 V. The parasitic power ratio reaches at its minimum value about 0.1 with an EM applied voltage of 0.25V.


Journal of Physical Chemistry B | 2017

Molecular Dynamics Simulation of Water Transport Mechanisms through Nanoporous Boron Nitride and Graphene Multilayers

Majid Shahbabaei; Daejoong Kim

In this study, molecular dynamics simulations are used to investigate water transport mechanisms through hourglass-shaped pore structure in nanoporous boron nitride (BN) and graphene multilayers. An increase in water flux is evidenced as the gap between the layers increases, reaching a maximum of 41 and 43 ns-1 at d = 6 Å in BN and graphene multilayers, respectively. Moreover, the BN multilayer exhibits less flux compared to graphene due to large friction force and energy barrier. In BN, the friction force dramatically increases when the layers are strongly stacked (d = 3.5 Å), whereas it would be independent of the layer separation when the layers are sufficiently spaced (d ≥ 5 Å). In contrast, it was shown that the friction force is independent of the layer spacing in graphene. On the other hand, water molecules across the BN exhibits larger energy barriers compared to graphene when the layers are highly spaced at d = 8 Å. Consistent with the result reported for the flux, the axial diffusion coefficient of water molecules in graphene increases with layer spacing, reaching a maximum of 6.8 × 10-5 cm2/s when the layers are spaced at d = 6 Å.


Fluid Dynamics Research | 2011

The initial flow dynamics of light atoms through carbon nanotubes

James Cannon; Daejoong Kim; Ortwin Hess

Carbon nanotubes are becoming increasingly viable as membranes for application in a wide variety of nano-fluidic applications, such as nano-scale nozzles. For potential applications that utilize switching on and off of flow through nanotube nozzles, it is important to understand the initial flow dynamics. Furthermore, when the nanotube interacts strongly with the fluid, the flow may be very different from conventional simulations, which consider atoms (such as argon, for example) that interact only weakly with the nanotube. Therefore, to better understand such flows and explore the potential manipulation of flow that can be achieved, we consider the initial flow dynamics of a light fluid through carbon nanotube nozzles, using non-equilibrium molecular dynamics simulations. Our studies show that if the conditions are controlled carefully, unusual phenomena can be generated, such as pulsed flow and very nonlinear increases in flow rate with nanotube diameter. We detail the physical reasons for such phenomena and describe how the pulsation can be controlled using temperature.


Transactions of The Korean Society of Mechanical Engineers B | 2013

Numerical Study of Hydrogen/Air Combustion in Combustion Chamber of Ultra Micro Gas Turbine by Change of Flow Rate and Equivalence Ratio

Kilsung Kwon; Yu Hyeon Hwang; Ho Kang; Daejoong Kim

In this study, we performed a numerical study of hydrogen/air combustion in the combustion chamber of an ultra micro gas turbine. The supply flow rate and equivalence ratio are used as variables, and the commercial computational fluid dynamic program (STAR-CCM) is used for the numerical study of the combustion. The flow rate significantly affects the flame position, flame temperature, and pressure ratio between the inlet and the outlet. The flame position is close to the outlet in the combustion chamber, and the flame temperature and pressure ratio monotonously increases with the supply flow rate. The change in the equivalence ratio does not affect the flame position. The maximum flame temperature occurs under stoichiometric conditions.


Transactions of The Korean Society of Mechanical Engineers B | 2012

Porous Glass Electroosmotic Pumps Reduced Bubble Generation Using Reversible Redox Solutions

Kilsung Kwon; Daejoong Kim

This paper presents the performance of a porous glass electroosmotic pump using an iodide/triiodide aqueous solution. The porous glass electroosmotic pump is characterized in terms of the flow rate and voltage. The flow rate and voltage increases linearly with current. A point where the voltage significantly increases is observed owing to an excess in redox capacity. The transition time monotonously decreases with current. The normalized flow rate (flow rate per membrane surface area) is used to compare previous results with results obtained in this study. The normalized flow rate of porous glass frits is three times higher than that of Nafion 117.


Korean Journal of Air-Conditioning and Refrigeration Engineering | 2012

Analysis of Cooling Characteristics of Broadcasting LED Light with Ion Wind Generator

Chul-Woo Park; Seung-Jun Lee; Daejoong Kim

In the present work, numerical analyses of broadcasting LED light with ion wind generator have been carried out for enhancement of cooling performance. Ion wind generator is produced and experimented before analysis. With the use of result of experiments, broadcasting LED light model is computed. Ion wind velocity into LED light is varied with 0~3 m/s. Based on the numerical results, the area of duct-type ion wind generator was designed to reduce the volume flow rate of ion wind. The modified inlet geometry shows sufficient cooling capability. And, through modified ion wind generator, the volume flow rate of ion wind has been largely reduced.


Journal of the Korea Academia-Industrial cooperation Society | 2016

Dispersion Characteristics of Hydrogen Gas by the Effect of Leakage Hole Size in Enclosure Space

Jinwook Choi; Longnan Li; Chul-Woo Park; Seong Hyuk Lee; Daejoong Kim

As a potential clean energy resource, the production and consumption of hydrogen gas are expected to gradually increase, so that hydrogen related studies are also increasing. The thermal and chemical properties of hydrogen result in its high flammability; in particular, there is a high risk if leaks occur within an enclosed space. In this study, we applied the computational fluid dynamics method to conduct a numerical study on the leakage behavior of hydrogen gas and compared these numerical study results with an experimental study. The leakage hole diameter was selected as an important parameter and the hydrogen gas dispersion behavior in an enclosed space was investigated through various analytical methods. Moreover, the flammable regions were investigated as a function of the leakage time and leakage hole size. We found that the growth rate of the flammable region increases rapidly with increasing leakage hole size. We also investigated the relation between the mass flow rate and the critical time when the hydrogen gas reaches the ceiling. The analysis of the monitoring points showed that the hydrogen gas dispersion behavior is isotropic and independent of the geometry. We found that the concentration of gas in an enclosed space is affected by both the leakage flow rate and amount of gas accumulated in the enclosure.

Collaboration


Dive into the Daejoong Kim's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Doo-Sun Choi

Korea University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge