Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dagmar Kolb is active.

Publication


Featured researches published by Dagmar Kolb.


Nature Medicine | 2011

ATGL-mediated fat catabolism regulates cardiac mitochondrial function via PPAR-[alpha] and PGC-1

Guenter Haemmerle; Tarek Moustafa; G. Woelkart; Sabrina Büttner; Albrecht Schmidt; T. van de Weijer; Matthijs K. C. Hesselink; Doris Jaeger; Petra C. Kienesberger; Kathrin A. Zierler; Renate Schreiber; Thomas O. Eichmann; Dagmar Kolb; P. Kotzbeck; Martina Schweiger; Manju Kumari; Sandra Eder; Gabriele Schoiswohl; N. Wongsiriroj; Nina M. Pollak; Franz P. W. Radner; K. Preiss Landl; T. Kolbe; T. Rulicke; Burkert Pieske; M. Trauner; Achim Lass; Robert Zimmermann; Gerald Hoefler; S. Cinti

Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that regulate genes involved in energy metabolism and inflammation. For biological activity, PPARs require cognate lipid ligands, heterodimerization with retinoic X receptors, and coactivation by PPAR-γ coactivator-1α or PPAR-γ coactivator-1β (PGC-1α or PGC-1β, encoded by Ppargc1a and Ppargc1b, respectively). Here we show that lipolysis of cellular triglycerides by adipose triglyceride lipase (patatin-like phospholipase domain containing protein 2, encoded by Pnpla2; hereafter referred to as Atgl) generates essential mediator(s) involved in the generation of lipid ligands for PPAR activation. Atgl deficiency in mice decreases mRNA levels of PPAR-α and PPAR-δ target genes. In the heart, this leads to decreased PGC-1α and PGC-1β expression and severely disrupted mitochondrial substrate oxidation and respiration; this is followed by excessive lipid accumulation, cardiac insufficiency and lethal cardiomyopathy. Reconstituting normal PPAR target gene expression by pharmacological treatment of Atgl-deficient mice with PPAR-α agonists completely reverses the mitochondrial defects, restores normal heart function and prevents premature death. These findings reveal a potential treatment for the excessive cardiac lipid accumulation and often-lethal cardiomyopathy in people with neutral lipid storage disease, a disease marked by reduced or absent ATGL activity.


Journal of Biological Chemistry | 2009

Good fat, essential cellular requirements for triacylglycerol synthesis to maintain membrane homeostasis in yeast.

Julia Petschnigg; Heimo Wolinski; Dagmar Kolb; Güenther Zellnig; Christoph F. Kurat; Klaus Natter; Sepp D. Kohlwein

Storage triacylglycerols (TAG) and membrane phospholipids share common precursors, i.e. phosphatidic acid and diacylglycerol, in the endoplasmic reticulum. In addition to providing a biophysically rather inert storage pool for fatty acids, TAG synthesis plays an important role to buffer excess fatty acids (FA). The inability to incorporate exogenous oleic acid into TAG in a yeast mutant lacking the acyltransferases Lro1p, Dga1p, Are1p, and Are2p contributing to TAG synthesis results in dysregulation of lipid synthesis, massive proliferation of intracellular membranes, and ultimately cell death. Carboxypeptidase Y trafficking from the endoplasmic reticulum to the vacuole is severely impaired, but the unfolded protein response is only moderately up-regulated, and dispensable for membrane proliferation, upon exposure to oleic acid. FA-induced toxicity is specific to oleic acid and much less pronounced with palmitoleic acid and is not detectable with the saturated fatty acids, palmitic and stearic acid. Palmitic acid supplementation partially suppresses oleic acid-induced lipotoxicity and restores carboxypeptidase Y trafficking to the vacuole. These data show the following: (i) FA uptake is not regulated by the cellular lipid requirements; (ii) TAG synthesis functions as a crucial intracellular buffer for detoxifying excess unsaturated fatty acids; (iii) membrane lipid synthesis and proliferation are responsive to and controlled by a balanced fatty acid composition.


Journal of Cell Science | 2011

A role for seipin in lipid droplet dynamics and inheritance in yeast

Heimo Wolinski; Dagmar Kolb; Sandra Hermann; Roman I. Koning; Sepp D. Kohlwein

Malfunctions of processes involved in cellular lipid storage and mobilization induce the pathogenesis of prevalent human diseases such as obesity, type 2 diabetes and atherosclerosis. Lipid droplets are the main lipid storage depots for neutral lipids in eukaryotic cells, and as such fulfil an essential function to balance cellular lipid metabolism and energy homeostasis. Despite significant progress in identifying key metabolic enzymes involved in lipid storage and their regulation in various model organisms, some fundamental questions as to the biogenesis, subcellular distribution and inheritance of lipid droplets are as yet unsolved. In this study, we applied a set of imaging techniques such as high-resolution four-dimensional (4D) live-cell imaging, quantitative microscopy, transmission electron microscopy and electron tomography to gain insight into the spatio-temporal organization of lipid droplets during cellular growth in the yeast Saccharomyces cerevisiae. This analysis revealed a high level of organization of the subcellular positioning of lipid droplets in individual cells, their directed migration towards the cellular periphery and a coordinated transfer of a subpopulation of lipid droplets into daughter cells during cell division. Lipid droplets appear to remain associated with ER membranes during cellular growth independently of their size and subcellular localization. Deletion of FLD1, the functional orthologue of the human BSCL2 gene encoding seipin, leads to impaired dynamics of yeast lipid droplets and defective lipolysis, which might be due to aberrant ER structures in these mutants. Our data suggest a role for yeast seipin as a scaffolding protein that is required for the dynamics of a specific subdomain of the ER, and provide a new aspect for the interpretation of abnormal lipid droplets phenotypes in yeast mutants lacking seipin.


Journal of Biological Chemistry | 2012

Remodeling of Lipid Droplets during Lipolysis and Growth in Adipocytes

Margret Paar; Christian Jüngst; Noemi A. Steiner; Christoph Magnes; Frank Sinner; Dagmar Kolb; Achim Lass; Robert Zimmermann; Andreas Zumbusch; Sepp D. Kohlwein; Heimo Wolinski

Background: Micro-lipid droplets (mLDs) appear in adipocytes upon lipolytic stimulation. LDs may grow by spontaneous, homotypic fusion. Results: Scavenging of fatty acids prevents mLD formation. LDs grow by a slow transfer of lipids between LDs. Conclusion: mLDs form due to fatty acid overflow. LD growth is a controlled process. Significance: Novel mechanistic insights into LD remodeling are provided. Synthesis, storage, and turnover of triacylglycerols (TAGs) in adipocytes are critical cellular processes to maintain lipid and energy homeostasis in mammals. TAGs are stored in metabolically highly dynamic lipid droplets (LDs), which are believed to undergo fragmentation and fusion under lipolytic and lipogenic conditions, respectively. Time lapse fluorescence microscopy showed that stimulation of lipolysis in 3T3-L1 adipocytes causes progressive shrinkage and almost complete degradation of all cellular LDs but without any detectable fragmentation into micro-LDs (mLDs). However, mLDs were rapidly formed after induction of lipolysis in the absence of BSA in the culture medium that acts as a fatty acid scavenger. Moreover, mLD formation was blocked by the acyl-CoA synthetase inhibitor triacsin C, implicating that mLDs are synthesized de novo in response to cellular fatty acid overload. Using label-free coherent anti-Stokes Raman scattering microscopy, we demonstrate that LDs grow by transfer of lipids from one organelle to another. Notably, this lipid transfer between closely associated LDs is not a rapid and spontaneous process but rather occurs over several h and does not appear to require physical interaction over large LD surface areas. These data indicate that LD growth is a highly regulated process leading to the heterogeneous LD size distribution within and between individual cells. Our findings suggest that lipolysis and lipogenesis occur in parallel in a cell to prevent cellular fatty acid overflow. Furthermore, we propose that formation of large LDs requires a yet uncharacterized protein machinery mediating LD interaction and lipid transfer.


Journal of Biological Chemistry | 2010

Efficient Phagocytosis Requires Triacylglycerol Hydrolysis by Adipose Triglyceride Lipase

Prakash G. Chandak; Branislav Radovic; Elma Aflaki; Dagmar Kolb; Marlene Buchebner; Eleonore Fröhlich; Christoph Magnes; Frank Sinner; Guenter Haemmerle; Rudolf Zechner; Ira Tabas; Sanja Levak-Frank; Dagmar Kratky

Macrophage phagocytosis is an essential biological process in host defense and requires large amounts of energy. To date, glucose is believed to represent the prime substrate for ATP production in macrophages. To investigate the relative contribution of free fatty acids (FFAs) in this process, we determined the phagocytosis rates in normal mouse macrophages and macrophages of adipose triglyceride lipase (ATGL)-deficient mice. ATGL was shown to be the rate-limiting enzyme for the hydrolysis of lipid droplet-associated triacylglycerol (TG) in many tissues. Here, we demonstrate that Atgl−/− macrophages fail to efficiently hydrolyze cellular TG stores leading to decreased cellular FFA concentrations and concomitant accumulation of lipid droplets, even in the absence of exogenous lipid loading. The reduced availability of FFAs results in decreased cellular ATP concentrations and impaired phagocytosis suggesting that fatty acids must first go through a cycle of esterification and re-hydrolysis before they are available as energy substrate. Exogenously added glucose cannot fully compensate for the phagocytotic defect in Atgl−/− macrophages. Hence, phagocytosis was also decreased in vivo when Atgl−/− mice were challenged with bacterial particles. These findings imply that phagocytosis in macrophages depends on the availability of FFAs and that ATGL is required for their hydrolytic release from cellular TG stores. This novel mechanism links ATGL-mediated lipolysis to macrophage function in host defense and opens the way to explore possible roles of ATGL in immune response, inflammation, and atherosclerosis.


Journal of Lipid Research | 2013

Cardiac-specific overexpression of perilipin 5 provokes severe cardiac steatosis via the formation of a lipolytic barrier

Nina M. Pollak; Martina Schweiger; Doris Jaeger; Dagmar Kolb; Manju Kumari; Renate Schreiber; Stephanie Kolleritsch; Philipp Markolin; Gernot F. Grabner; Christoph Heier; Kathrin A. Zierler; Thomas Rülicke; Robert Zimmermann; Achim Lass; Rudolf Zechner; Guenter Haemmerle

Cardiac triacylglycerol (TG) catabolism critically depends on the TG hydrolytic activity of adipose triglyceride lipase (ATGL). Perilipin 5 (Plin5) is expressed in cardiac muscle (CM) and has been shown to interact with ATGL and its coactivator comparative gene identification-58 (CGI-58). Furthermore, ectopic Plin5 expression increases cellular TG content and Plin5-deficient mice exhibit reduced cardiac TG levels. In this study we show that mice with cardiac muscle-specific overexpression of perilipin 5 (CM-Plin5) massively accumulate TG in CM, which is accompanied by moderately reduced fatty acid (FA) oxidizing gene expression levels. Cardiac lipid droplet (LD) preparations from CM of CM-Plin5 mice showed reduced ATGL- and hormone-sensitive lipase-mediated TG mobilization implying that Plin5 overexpression restricts cardiac lipolysis via the formation of a lipolytic barrier. To test this hypothesis, we analyzed TG hydrolytic activities in preparations of Plin5-, ATGL-, and CGI-58-transfected cells. In vitro ATGL-mediated TG hydrolysis of an artificial micellar TG substrate was not inhibited by the presence of Plin5, whereas Plin5-coated LDs were resistant toward ATGL-mediated TG catabolism. These findings strongly suggest that Plin5 functions as a lipolytic barrier to protect the cardiac TG pool from uncontrolled TG mobilization and the excessive release of free FAs.


Journal of Biological Chemistry | 2013

Functional cardiac lipolysis in mice critically depends on comparative gene identification-58

Kathrin A. Zierler; Doris Jaeger; Nina M. Pollak; Sandra Eder; Gerald N. Rechberger; Franz P. W. Radner; Gerald Woelkart; Dagmar Kolb; Albrecht Schmidt; Manju Kumari; Karina Preiss-Landl; Burkert Pieske; Bernd Mayer; Robert A. Zimmermann; Achim Lass; Rudolf Zechner; Guenter Haemmerle

Background: The role of CGI-58 in muscle triacylglycerol catabolism is unknown. The presence of CGI-58 increases the lipolytic activity of adipose triglyceride lipase (ATGL). Results: Muscle-specific CGI-58 deficiency causes muscle steatosis and cardiac dysfunction despite elevated ATGL protein expression. Conclusion: Muscle lipolysis critically depends on both CGI-58 and ATGL. Significance: Muscle CGI-58 deficiency provokes severe cardiac steatosis and dysfunction. Efficient catabolism of cellular triacylglycerol (TG) stores requires the TG hydrolytic activity of adipose triglyceride lipase (ATGL). The presence of comparative gene identification-58 (CGI-58) strongly increased ATGL-mediated TG catabolism in cell culture experiments. Mutations in the genes coding for ATGL or CGI-58 in humans cause neutral lipid storage disease characterized by TG accumulation in multiple tissues. ATGL gene mutations cause a severe phenotype especially in cardiac muscle leading to cardiomyopathy that can be lethal. In contrast, CGI-58 gene mutations provoke severe ichthyosis and hepatosteatosis in humans and mice, whereas the role of CGI-58 in muscle energy metabolism is less understood. Here we show that mice lacking CGI-58 exclusively in muscle (CGI-58KOM) developed severe cardiac steatosis and cardiomyopathy linked to impaired TG catabolism and mitochondrial fatty acid oxidation. The marked increase in ATGL protein levels in cardiac muscle of CGI-58KOM mice was unable to compensate the lack of CGI-58. The addition of recombinant CGI-58 to cardiac lysates of CGI-58KOM mice completely reconstituted TG hydrolytic activities. In skeletal muscle, the lack of CGI-58 similarly provoked TG accumulation. The addition of recombinant CGI-58 increased TG hydrolytic activities in control and CGI-58KOM tissue lysates, elucidating the limiting role of CGI-58 in skeletal muscle TG catabolism. Finally, muscle CGI-58 deficiency affected whole body energy homeostasis, which is caused by impaired muscle TG catabolism and increased cardiac glucose uptake. In summary, this study demonstrates that functional muscle lipolysis depends on both CGI-58 and ATGL.


Journal of Biological Chemistry | 2011

Triacylglycerol accumulation activates the mitochondrial apoptosis pathway in macrophages

Elma Aflaki; Branislav Radovic; Prakash G. Chandak; Dagmar Kolb; Tobias Eisenberg; Julia Ring; Ismene Fertschai; Andreas Uellen; Heimo Wolinski; Sepp-Dieter Kohlwein; Rudolf Zechner; Sanja Levak-Frank; Wolfgang Sattler; Wolfgang F. Graier; Roland Malli; Frank Madeo; Dagmar Kratky

Programmed cell death of lipid-laden macrophages is a prominent feature of atherosclerotic lesions and mostly ascribed to accumulation of excess intracellular cholesterol. The present in vitro study investigated whether intracellular triacylglycerol (TG) accumulation could activate a similar apoptotic response in macrophages. To address this question, we utilized peritoneal macrophages isolated from mice lacking adipose triglyceride lipase (ATGL), the major enzyme responsible for TG hydrolysis in multiple tissues. In Atgl−/− macrophages, we observed elevated levels of cytosolic Ca2+ and reactive oxygen species, stimulated cytochrome c release, and nuclear localization of apoptosis-inducing factor. Fragmented mitochondria prior to cell death were indicative of the mitochondrial apoptosis pathway being triggered as a consequence of defective lipolysis. Other typical markers of apoptosis, such as externalization of phosphatidylserine in the plasma membrane, caspase 3 and poly(ADP-ribose) polymerase cleavage, were increased in Atgl−/− macrophages. An artificial increase of cellular TG levels by incubating wild-type macrophages with very low density lipoprotein closely mimicked the apoptotic phenotype observed in Atgl−/− macrophages. Results obtained during the present study define a novel pathway linking intracellular TG accumulation to mitochondrial dysfunction and programmed cell death in macrophages.


Biochimica et Biophysica Acta | 2015

Seipin is involved in the regulation of phosphatidic acid metabolism at a subdomain of the nuclear envelope in yeast.

Heimo Wolinski; Harald F. Hofbauer; Klara Hellauer; Alvaro Cristobal-Sarramian; Dagmar Kolb; Maja Radulovic; Oskar L. Knittelfelder; Gerald N. Rechberger; Sepp D. Kohlwein

Yeast Fld1 and Ldb16 resemble mammalian seipin, implicated in neutral lipid storage. Both proteins form a complex at the endoplasmic reticulum-lipid droplet (LD) interface. Malfunction of this complex either leads to LD clustering or to the generation of supersized LD (SLD) in close vicinity to the nuclear envelope, in response to altered phospholipid (PL) composition. We show that similar to mutants lacking Fld1, deletion of LDB16 leads to abnormal proliferation of a subdomain of the nuclear envelope, which is tightly associated with clustered LD. The human lipin-1 ortholog, the PAH1 encoded phosphatidic acid (PA) phosphatase, and its activator Nem1 are highly enriched at this site. The specific accumulation of PA-binding marker proteins indicates a local enrichment of PA in the fld1 and ldb16 mutants. Furthermore, we demonstrate that clustered LD in fld1 or ldb16 mutants are transformed to SLD if phosphatidylcholine synthesis is compromised by additional deletion of the phosphatidylethanolamine methyltransferase, Cho2. Notably, treatment of wild-type cells with oleate induced a similar LD clustering and nuclear membrane proliferation phenotype as observed in fld1 and ldb16 mutants. These data suggest that the Fld1-Ldb16 complex affects PA homeostasis at an LD-forming subdomain of the nuclear envelope. Lack of Fld1-Ldb16 leads to locally elevated PA levels that induce an abnormal proliferation of nER membrane structures and the clustering of associated LD. We suggest that the formation of SLD is a consequence of locally altered PL metabolism at this site.


Cell Metabolism | 2017

Cold-Induced Thermogenesis Depends on ATGL-Mediated Lipolysis in Cardiac Muscle, but Not Brown Adipose Tissue

Renate Schreiber; Clemens Diwoky; Gabriele Schoiswohl; Ursula Feiler; Nuttaporn Wongsiriroj; Mahmoud Abdellatif; Dagmar Kolb; Joris Hoeks; Erin E. Kershaw; Simon Sedej; Patrick Schrauwen; Guenter Haemmerle; Rudolf Zechner

Summary Fatty acids (FAs) activate and fuel UCP1-mediated non-shivering thermogenesis (NST) in brown adipose tissue (BAT). Release of FAs from intracellular fat stores by adipose triglyceride lipase (ATGL) is considered a key step in NST. Accordingly, the severe cold intolerance of global ATGL knockout (AKO) mice has been attributed to defective BAT lipolysis. Here we show that this conclusion is incorrect. We demonstrate that although the BAT-specific loss of ATGL impairs BAT lipolysis and alters BAT morphology, it does not compromise the β3-adrenergic thermogenic response or cold-induced NST. Instead, NST depends on nutrient supply or lipolysis in white adipose tissue during fasting, suggesting that circulating energy substrates are sufficient to fuel NST. Cold intolerance in AKO mice is not caused by BAT dysfunction as previously suspected but by severe cardiomyopathy. We conclude that functional NST requires adequate substrate supply and cardiac function, but does not depend on ATGL-mediated lipolysis in BAT.

Collaboration


Dive into the Dagmar Kolb's collaboration.

Top Co-Authors

Avatar

Dagmar Kratky

Medical University of Graz

View shared research outputs
Top Co-Authors

Avatar

Branislav Radovic

Medical University of Graz

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nemanja Vujic

Medical University of Graz

View shared research outputs
Top Co-Authors

Avatar

Christina Leopold

Medical University of Graz

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge