Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dagny L. Looper is active.

Publication


Featured researches published by Dagny L. Looper.


The Astrophysical Journal | 2009

COSMOS PHOTOMETRIC REDSHIFTS WITH 30-BANDS FOR 2-deg2

O. Ilbert; P. Capak; M. Salvato; H. Aussel; H. J. McCracken; D. B. Sanders; N. Z. Scoville; J. Kartaltepe; S. Arnouts; E. Le Floc'h; Bahram Mobasher; Y. Taniguchi; F. Lamareille; A. Leauthaud; Shunji S. Sasaki; D. Thompson; M. Zamojski; G. Zamorani; S. Bardelli; M. Bolzonella; A. Bongiorno; M. Brusa; Karina Caputi; C. M. Carollo; T. Contini; R. Cook; G. Coppa; O. Cucciati; S. de la Torre; L. de Ravel

We present accurate photometric redshifts in the 2-deg2 COSMOS field. The redshifts are computed with 30 broad, intermediate, and narrow bands covering the UV (GALEX), Visible-NIR (Subaru, CFHT, UKIRT and NOAO) and mid-IR (Spitzer/IRAC). A chi2 template-fitting method (Le Phare) was used and calibrated with large spectroscopic samples from VLT-VIMOS and Keck-DEIMOS. We develop and implement a new method which accounts for the contributions from emission lines (OII, Hbeta, Halpha and Ly) to the spectral energy distributions (SEDs). The treatment of emission lines improves the photo-z accuracy by a factor of 2.5. Comparison of the derived photo-z with 4148 spectroscopic redshifts (i.e. Delta z = zs - zp) indicates a dispersion of sigma_{Delta z/(1+zs)}=0.007 at i<22.5, a factor of 2-6 times more accurate than earlier photo-z in the COSMOS, CFHTLS and COMBO-17 survey fields. At fainter magnitudes i<24 and z<1.25, the accuracy is sigma_{Delta z/(1+zs)}=0.012. The deep NIR and IRAC coverage enables the photo-z to be extended to z~2 albeit with a lower accuracy (sigma_{Delta z/(1+zs)}=0.06 at i~24). The redshift distribution of large magnitude-selected samples is derived and the median redshift is found to range from z=0.66 at 22


The Astrophysical Journal | 2008

A SAMPLE OF VERY YOUNG FIELD L DWARFS AND IMPLICATIONS FOR THE BROWN DWARF LITHIUM TEST AT EARLY AGES

J. Davy Kirkpatrick; Kelle L. Cruz; Travis S. Barman; Adam J. Burgasser; Dagny L. Looper; C. G. Tinney; Christopher R. Gelino; Patrick J. Lowrance; James Liebert; John M. Carpenter; Lynne A. Hillenbrand; John R. Stauffer

Using a large sample of optical spectra of late-type dwarfs, we identify a subset of late-M through L field dwarfs that, because of the presence of low-gravity features in their spectra, are believed to be unusually young. From a combined sample of 303 field L dwarfs, we find observationally that 7.6% ± 1.6% are younger than 100 Myr. This percentage is in agreement with theoretical predictions once observing biases are taken into account. We find that these young L dwarfs tend to fall in the southern hemisphere (decl: < 0°) and may be previously unrecognized, low-mass members of nearby, young associations like Tucana-Horologium, TW Hydrae, β Pictoris, and AB Doradus. We use a homogeneously observed sample of ~150 optical spectra to examine lithium strength as a function of L/T spectral type and further corroborate the trends noted by Kirkpatrick and coworkers. We use our low-gravity spectra to investigate lithium strength as a function of age. The data weakly suggest that for early- to mid-L dwarfs the line strength reaches a maximum for a few x 100 Myr, whereas for much older (few Gyr) and much younger (<100 Myr) L dwarfs the line is weaker or undetectable. We show that a weakening of lithium at lower gravities is predicted by model atmosphere calculations, an effect partially corroborated by existing observational data. Larger samples containing L dwarfs of well-determined ages are needed to further test this empirically. If verified, this result would reinforce the caveat first cited by Kirkpatrick and coworkers that the lithium test should be used with caution when attempting to confirm the substellar nature of the youngest brown dwarfs.


The Astrophysical Journal | 2010

SpeX SPECTROSCOPY OF UNRESOLVED VERY LOW MASS BINARIES. I. IDENTIFICATION OF 17 CANDIDATE BINARIES STRADDLING THE L DWARF/T DWARF TRANSITION

Adam J. Burgasser; Kelle L. Cruz; Michael C. Cushing; Christopher R. Gelino; Dagny L. Looper; Jacqueline K. Faherty; J. Davy Kirkpatrick; I. Neill Reid

We report the identification of 17 candidate brown dwarf binaries whose components straddle the L dwarf/T dwarf transition. These sources were culled from a large near-infrared spectral sample of L and T dwarfs observed with the Infrared Telescope Facility SpeX spectrograph. Candidates were selected on the basis of spectral ratios which segregate known (resolved) L dwarf/T dwarf pairs from presumably single sources. Composite templates, constructed by combining 13,581 pairs of absolute flux-calibrated spectra, are shown to provide statistically superior fits to the spectra of our 17 candidates as compared to single templates. Ten of these candidates appear to have secondary components that are significantly brighter than their primaries over the 1.0-1.3 μm band, indicative of rapid condensate depletion at the L dwarf/T dwarf transition. Our results support prior indications of enhanced multiplicity amongst early-type T dwarfs; 53% ± 7% of the T0-T4 dwarfs in our spectral sample are found to be either resolved or unresolved (candidate) pairs, although this is consistent with an intrinsic (volume complete) brown dwarf binary fraction of only 15%. If verified, this sample of spectral binaries more than doubles the number of known L dwarf/T dwarf transition pairs, enabling a broader exploration of this poorly understood phase of brown dwarf atmospheric evolution.


The Astrophysical Journal | 2008

A Cross-Match of 2MASS and SDSS: Newly Found L and T Dwarfs and an Estimate of the Space Density of T Dwarfs

Stanimir Metchev; J. Davy Kirkpatrick; G. Bruce Berriman; Dagny L. Looper

We report new L and T dwarfs found in a cross-match of the SDSS Data Release 1 and 2MASS. Our simultaneous search of the two databases effectively allows us to relax the criteria for object detection in either survey and to explore the combined databases to a greater completeness level. We find two new T dwarfs in addition to the 13 already known in the SDSS DR1 footprint. We also identify 22 new candidate and bona fide L dwarfs, including a new young L2 dwarf and a peculiar potentially metal-poor L2 dwarf with unusually blue near-IR colors. These discoveries underscore the utility of simultaneous database cross-correlation in searching for rare objects. Our cross-match completes the census of T dwarfs within the joint SDSS and 2MASS flux limits to the ≈97% level. Hence, we are able to accurately infer the space density of T dwarfs. We employ Monte Carlo tools to simulate the observed population of SDSS DR1 T dwarfs with 2MASS counterparts and find that the space density of T0 - T8 dwarf systems is 0.0070^(+0.0032)_ (-0.0030) pc^-3 (95% confidence interval), i.e., about one per 140 pc^3. Compared to predictions for the T dwarf space density that depend on various assumptions for the substellar mass function, this result is most consistent with models that assume a flat substellar mass function dN/dM ∝ M^0.0. No >T8 dwarfs were discovered in the present cross-match, although less than one was expected in the limited area (2099 deg^2) of SDSS DR1.


The Astrophysical Journal | 2008

Discovery of two nearby peculiar L dwarfs from the 2MASS proper-motion survey: young or metal-rich?

Dagny L. Looper; J. Davy Kirkpatrick; Roc Michael Cutri; Travis S. Barman; Adam J. Burgasser; Michael C. Cushing; Thomas L. Roellig; Mark R. McGovern; Ian S. McLean; Emily L. Rice; Brandon J. Swift; Steven D. Schurr

We present the discovery of two nearby L dwarfs from our 2MASS proper-motion search, which uses multiepoch 2MASS observations covering ~4700 deg^2 of sky. 2MASS J18212815+1414010 and 2MASS J21481628+4003593 were overlooked by earlier surveys due to their faint optical magnitudes and their proximity to the Galactic plane (10° ≤ | b | ≤ 15°). Assuming that both dwarfs are single, we derive spectrophotometric distances of ~10 pc, thus increasing the number of known L dwarfs within 10 pc to 10. In the near-infrared, 2MASS J21481628+4003593 shows a triangular H-band spectrum, strong CO absorption, and a markedly red J − K_s color (2.38 ± 0.06) for its L6 optical spectral type. 2MASS J18212815+1414010 also shows a triangular H-band spectrum and a slightly red J − K_s color (1.78 ± 0.05) for its L4.5 optical spectral type. Both objects show strong silicate absorption at 9-11 μm. Cumulatively, these features imply an unusually dusty photosphere for both of these objects. We examine several scenarios to explain the underlying cause for their enhanced dust content and find that a metal-rich atmosphere or a low surface gravity are consistent with these results. 2MASS J18212815+1414010 may be young (and therefore have a low surface gravity) based on its low tangential velocity of 10 km s^−1. On the other hand, 2MASS J21481628+4003593 has a high tangential velocity of 62 km s^−1 and is therefore likely old. Hence, high metallicity and low surface gravity may lead to similar effects.


The Astrophysical Journal | 2015

FUNDAMENTAL PARAMETERS AND SPECTRAL ENERGY DISTRIBUTIONS OF YOUNG AND FIELD AGE OBJECTS WITH MASSES SPANNING THE STELLAR TO PLANETARY REGIME

Joseph C. Filippazzo; Emily L. Rice; Jacqueline K. Faherty; Kelle L. Cruz; Mollie M. Van Gordon; Dagny L. Looper

We combine optical, near-infrared and mid-infrared spectra and photometry to construct expanded spectral energy distributions (SEDs) for 145 field age (\textgreater 500 Myr) and 53 young (lower age estimate \textless 500 Myr) ultracool dwarfs (M6-T9). This range of spectral types includes very low mass stars, brown dwarfs, and planetary mass objects, providing fundamental parameters across both the hydrogen and deuterium burning minimum masses for the largest sample assembled to date. A subsample of 29 objects have well constrained ages as probable members of a nearby young moving group (NYMG). We use 182 parallaxes and 16 kinematic distances to determine precise bolometric luminosities (


The Astronomical Journal | 2007

Discovery of 11 New T Dwarfs in the Two Micron All Sky Survey, Including a Possible L/T Transition Binary

Dagny L. Looper; J. Davy Kirkpatrick; Adam J. Burgasser

L_\text{bol}


The Astrophysical Journal | 2008

Discovery of a T Dwarf Binary with the Largest Known J-Band Flux Reversal

Dagny L. Looper; Christopher R. Gelino; Adam J. Burgasser; J. Davy Kirkpatrick

) and radius estimates from evolutionary models give semi-empirical effective temperatures (


The Astrophysical Journal | 2010

THE ENIGMATIC YOUNG, LOW-MASS VARIABLE TWA 30 ∗

Dagny L. Looper; Subhanjoy Mohanty; John J. Bochanski; Adam J. Burgasser; Eric E. Mamajek; Gregory J. Herczeg; Andrew A. West; Jacqueline K. Faherty; John T. Rayner; Mark A. Pitts; J. Davy Kirkpatrick

T_\text{eff}


The Astrophysical Journal | 2013

Protoplanetary Disk Masses from Stars to Brown Dwarfs

Subhanjoy Mohanty; J. S. Greaves; D. Mortlock; Ilaria Pascucci; Alexander Scholz; M. A. Thompson; Daniel Apai; Giuseppe Lodato; Dagny L. Looper

) for the full range of young and field age late-M, L and T dwarfs. We construct age-sensitive relationships of luminosity, temperature and absolute magnitude as functions of spectral type and absolute magnitude to disentangle the effects of degenerate physical parameters such as

Collaboration


Dive into the Dagny L. Looper's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Davy Kirkpatrick

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Kelle L. Cruz

American Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jacqueline K. Faherty

American Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher R. Gelino

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emily L. Rice

American Museum of Natural History

View shared research outputs
Researchain Logo
Decentralizing Knowledge