Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daisuke Sakano is active.

Publication


Featured researches published by Daisuke Sakano.


Bioscience, Biotechnology, and Biochemistry | 2006

Genes Encoding Small Heat Shock Proteins of the Silkworm, Bombyx mori

Daisuke Sakano; Bin Li; Qingyou Xia; Kohji Yamamoto; Hiroshi Fujii; Yoichi Aso

Small heat shock protein (sHSP) is a family of ubiquitous polypeptides involved in a variety of physiological phenomena. From the silkworm, Bombyx mori, we isolated and sequenced the following cDNAs encoding sHSPs: shsp19.9, shsp20.1, shsp20.4, shsp20.8, shsp21.4, and shsp23.7. shsp21.4 was nearly twice as large in size as other shsps. The deduced amino acid sequence of sHSP21.4 was similar to that of Drosophila melanogaster CG14207-PA. Other sHSPs were highly similar to each other and, in a phylogenetic tree, formed a cluster including Plodia interpunctella αCP25. It was speculated that shsp21.4 has at least one intron in genome while other shsps do not. The transcripts of all shsps were subtle, but were constitutively detected in various tissues. Heat shock triggered a substantial increase in the transcripts other than shsp21.4. The B. mori sHSPs are perhaps classified into at least two groups: sHSP21.4 and others.


Developmental Cell | 2010

BCL6 Canalizes Notch-Dependent Transcription, Excluding Mastermind-like1 from Selected Target Genes during Left-Right Patterning

Daisuke Sakano; Akiko Kato; Nisarg Parikh; Kelly McKnight; Doris Terry; Branko Stefanovic; Yoichi Kato

Although the Notch signaling pathway is one of the most intensely studied intracellular signaling pathways, the mechanisms by which Notch signaling regulates transcription remain incompletely understood. Here, we report that B cell leukemia/lymphoma 6 (BCL6), a transcriptional repressor, is a Notch-associated factor. BCL6 is necessary to maintain the expression of Pitx2 in the left lateral plate mesoderm during the patterning of left-right asymmetry in Xenopus embryos. For this process, BCL6 forms a complex with BCL6 corepressor (BCoR) on the promoters of selected Notch target genes such as enhancer of split related 1. BCL6 also inhibits the transcription of these genes by competing for the Notch1 intracellular domain, preventing the coactivator Mastermind-like1 (MAM1) from binding. These results define a mechanism restricting Notch-activated transcription to cell-type-appropriate subsets of target genes, and elucidate its relevance in vivo during left-right asymmetric development.


Journal of Molecular Cell Biology | 2014

Generation of insulin-producing β-like cells from human iPS cells in a defined and completely xeno-free culture system

Hussain Md. Shahjalal; Nobuaki Shiraki; Daisuke Sakano; Kazuhide Kikawa; Soichiro Ogaki; Hideo Baba; Kazuhiko Kume; Shoen Kume

Human induced pluripotent stem (hiPS) cells are considered a potential source for the generation of insulin-producing pancreatic β-cells because of their differentiation capacity. In this study, we have developed a five-step xeno-free culture system to efficiently differentiate hiPS cells into insulin-producing cells in vitro. We found that a high NOGGIN concentration is crucial for specifically inducing the differentiation first into pancreatic and duodenal homeobox-1 (PDX1)-positive pancreatic progenitors and then into neurogenin 3 (NGN3)-expressing pancreatic endocrine progenitors, while suppressing the differentiation into hepatic or intestinal cells. We also found that a combination of 3-isobutyl-1-methylxanthine (IBMX), exendin-4, and nicotinamide was important for the differentiation into insulin single-positive cells that expressed various pancreatic β-cell markers. Most notably, the differentiated cells contained endogenous C-peptide pools that were released in response to various insulin secretagogues and high levels of glucose. Therefore, our results demonstrate the feasibility of generating hiPS-derived pancreatic β-cells under xeno-free conditions and highlight their potential to treat patients with type 1 diabetes.


Bioscience, Biotechnology, and Biochemistry | 2005

Proteomic Studies of Isoforms of the P25 Component of Bombyx mori Fibroin

Pingbo Zhang; Kohji Yamamoto; Yoichi Aso; Yutaka Banno; Daisuke Sakano; Yongqiang Wang; Hiroshi Fujii

It is recognized that P25 is one of three polypeptide components of the fibroin synthesized in the larval silk gland (SG) of silkworm, having two glycosylated isoforms. In the present study, however, eight P25 isoforms were separated by proteomics, including two-dimensional gel electrophoresis of whole SG proteins, and were identified by the peptide mass fingerprinting method. Four of the eight isoforms were identified as Bombyx mandarina P25s, although the SG of Bombyx mori has never been considered to contain the P25 from B. mandarina. It is suggested that this diversity of P25 isoforms depends on phosphorylation modification in addition to glycosylation.


Biochemical and Biophysical Research Communications | 2013

Recovery from diabetes in neonatal mice after a low-dose streptozotocin treatment

Masateru Kataoka; Yuki Kawamuro; Nobuaki Shiraki; Rika Miki; Daisuke Sakano; Tetsu Yoshida; Takanori Yasukawa; Kazuhiko Kume; Shoen Kume

Administration of streptozotocin (STZ) induces destruction of β-cells and is widely used as an experimental animal model of type I diabetes. In neonatal rat, after low-doses of STZ-mediated destruction of β-cells, β-cells regeneration occurs and reversal of hyperglycemia was observed. However, in neonatal mice, β-cell regeneration seems to occur much slowly compared to that observed in the rat. Here, we described the time dependent quantitative changes in β-cell mass during a spontaneous slow recovery of diabetes induced in a low-dose STZ mice model. We then investigated the underlying mechanisms and analyzed the cell source for the recovery of β-cells. We showed here that postnatal day 7 (P7) female mice treated with 50 mg/kg STZ underwent the destruction of a large proportion of β-cells and developed hyperglycemia. The blood glucose increased gradually and reached a peak level at 500 mg/dl on day 35-50. This was followed by a spontaneous regeneration of β-cells. A reversal of non-fasting blood glucose to the control value was observed within 150 days. However, the mice still showed impaired glucose tolerance on day 150 and day 220, although a significant improvement was observed on day 150. Quantification of the β-cell mass revealed that the β-cell mass increased significantly between day 100 and day 150. On day 150 and day 220, the β-cell mass was approximately 23% and 48.5% of the control, respectively. Of the insulin-positive cells, 10% turned out to be PCNA-positive proliferating cells. Our results demonstrated that, β-cell duplication is one of the cell sources for β-cell regeneration.


PLOS ONE | 2013

Secreted Cerberus1 as a Marker for Quantification of Definitive Endoderm Differentiation of the Pluripotent Stem Cells

Hidefumi Iwashita; Nobuaki Shiraki; Daisuke Sakano; Takashi Ikegami; Masanobu Shiga; Kazuhiko Kume; Shoen Kume

To date, CXCR4 and E-cadherin double-positive cells detected by flow cytometry have been used to identify the differentiation of embryonic stem (ES) cells or induced pluripotent stem (iPS) cells into definitive endoderm (DE) lineages. Quantification of DE differentiation from ES/iPS cells by using flow cytometry is a multi-step procedure including dissociation of the cells, antibody reaction, and flow cytometry analysis. To establish a quick assay method for quantification of ES/iPS cell differentiation into the DE without dissociating the cells, we examined whether secreted Cerberus1 (Cer1) protein could be used as a marker. Cer1 is a secreted protein expressed first in the anterior visceral endoderm and then in the DE. The amount of Cer1 secreted correlated with the proportion of CXCR4+/E-Cadherin+ cells that differentiated from mouse ES cells. In addition, we found that human iPS cell-derived DE also expressed the secreted CER1 and that the expression level correlated with the proportion of SOX17+/FOXA2+ cells present. Taken together, these results show that Cer1 (or CER1) serves as a good marker for quantification of DE differentiation of mouse and human ES/iPS cells.


Diabetes | 2018

Inhibition of Cdk5 promotes β-cell differentiation from ductal progenitors

Ka-Cheuk Liu; Gunter Leuckx; Daisuke Sakano; Philip A. Seymour; Charlotte L. Mattsson; Linn Rautio; Willem Staels; Yannick Verdonck; Palle Serup; Shoen Kume; Harry Heimberg; Olov Andersson

Inhibition of notch signaling is known to induce differentiation of endocrine cells in zebrafish and mouse. After performing an unbiased in vivo screen of ∼2,200 small molecules in zebrafish, we identified an inhibitor of Cdk5 (roscovitine), which potentiated the formation of β-cells along the intrapancreatic duct during concurrent inhibition of notch signaling. We confirmed and characterized the effect with a more selective Cdk5 inhibitor, (R)-DRF053, which specifically increased the number of duct-derived β-cells without affecting their proliferation. By duct-specific overexpression of the endogenous Cdk5 inhibitors Cdk5rap1 or Cdkal1 (which previously have been linked to diabetes in genome-wide association studies), as well as deleting cdk5, we validated the role of chemical Cdk5 inhibition in β-cell differentiation by genetic means. Moreover, the cdk5 mutant zebrafish displayed an increased number of β-cells independently of inhibition of notch signaling, in both the basal state and during β-cell regeneration. Importantly, the effect of Cdk5 inhibition to promote β-cell formation was conserved in mouse embryonic pancreatic explants, adult mice with pancreatic ductal ligation injury, and human induced pluripotent stem (iPS) cells. Thus, we have revealed a previously unknown role of Cdk5 as an endogenous suppressor of β-cell differentiation and thereby further highlighted its importance in diabetes.


PLOS ONE | 2014

Beneficial Effect of Insulin Treatment on Islet Transplantation Outcomes in Akita Mice

Kazuhide Kikawa; Daisuke Sakano; Nobuaki Shiraki; Tomonori Tsuyama; Kazuhiko Kume; Fumio Endo; Shoen Kume

Islet transplantation is a promising potential therapy for patients with type 1 diabetes. The outcome of islet transplantation depends on the transplantation of a sufficient amount of β-cell mass. However, the initial loss of islets after transplantation is problematic. We hypothesized the hyperglycemic status of the recipient may negatively affect graft survival. Therefore, in the present study, we evaluated the effect of insulin treatment on islet transplantation involving a suboptimal amount of islets in Akita mice, which is a diabetes model mouse with an Insulin 2 gene missense mutation. Fifty islets were transplanted under the left kidney capsule of the recipient mouse with or without insulin treatment. For insulin treatment, sustained-release insulin implants were implanted subcutaneously into recipient mice 2 weeks before transplantation and maintained for 4 weeks. Islet transplantation without insulin treatment did not reverse hyperglycemia. In contrast, the group that received transplants in combination with insulin treatment exhibited improved fasting blood glucose levels until 18 weeks after transplantation, even after insulin treatment was discontinued. The group that underwent islet transplantation in combination with insulin treatment had better glucose tolerance than the group that did not undergo insulin treatment. Insulin treatment improved graft survival from the acute phase (i.e., 1 day after transplantation) to the chronic phase (i.e., 18 weeks after transplantation). Islet apoptosis increased with increasing glucose concentration in the medium or blood in both the in vitro culture and in vivo transplantation experiments. Expression profile analysis of grafts indicated that genes related to immune response, chemotaxis, and inflammatory response were specifically upregulated when islets were transplanted into mice with hyperglycemia compared to those with normoglycemia. Thus, the results demonstrate that insulin treatment protects islets from the initial rapid loss that is usually observed after transplantation and positively affects the outcome of islet transplantation in Akita mice.


Stem cell reports | 2016

Dopamine D2 Receptor-Mediated Regulation of Pancreatic β Cell Mass

Daisuke Sakano; Sungik Choi; Masateru Kataoka; Nobuaki Shiraki; Motonari Uesugi; Kazuhiko Kume; Shoen Kume

Summary Understanding the molecular mechanisms that regulate β cell mass and proliferation is important for the treatment of diabetes. Here, we identified domperidone (DPD), a dopamine D2 receptor (DRD2) antagonist that enhances β cell mass. Over time, islet β cell loss occurs in dissociation cultures, and this was inhibited by DPD. DPD increased proliferation and decreased apoptosis of β cells through increasing intracellular cAMP. DPD prevented β cell dedifferentiation, which together highly contributed to the increased β cell mass. DRD2 knockdown phenocopied the effects of domperidone and increased the number of β cells. Drd2 overexpression sensitized the dopamine responsiveness of β cells and increased apoptosis. Further analysis revealed that the adenosine agonist 5′-N-ethylcarboxamidoadenosine, a previously identified promoter of β cell proliferation, acted with DPD to increase the number of β cells. In humans, dopamine also modulates β cell mass through DRD2 and exerts an inhibitory effect on adenosine signaling.


Genes to Cells | 2015

Neural cells play an inhibitory role in pancreatic differentiation of pluripotent stem cells

Ryutaro Nakashima; Mayu Morooka; Nobuaki Shiraki; Daisuke Sakano; Soichiro Ogaki; Kazuhiko Kume; Shoen Kume

Pancreatic endocrine β‐cells derived from embryonic stem (ES) cells and induced pluripotent stem (iPS) cells have received attention as screening systems for therapeutic drugs and as the basis for cell‐based therapies. Here, we used a 12‐day β‐cell differentiation protocol for mouse ES cells and obtained several hit compounds that promoted β‐cell differentiation. One of these compounds, mycophenolic acid (MPA), effectively promoted ES cell differentiation with a concomitant reduction of neuronal cells. The existence of neural cell‐derived inhibitory humoral factors for β‐cell differentiation was suggested using a co‐culture system. Based on gene array analysis, we focused on the Wnt/β‐catenin pathway and showed that the Wnt pathway inhibitor reversed MPA‐induced β‐cell differentiation. Wnt pathway activation promoted β‐cell differentiation also in human iPS cells. Our results showed that Wnt signaling activation positively regulates β‐cell differentiation, and represent a downstream target of the neural inhibitory factor.

Collaboration


Dive into the Daisuke Sakano's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge