Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kazuhiko Kume is active.

Publication


Featured researches published by Kazuhiko Kume.


Cell | 1999

mCRY1 and mCRY2 Are Essential Components of the Negative Limb of the Circadian Clock Feedback Loop

Kazuhiko Kume; Mark J. Zylka; Sathyanarayanan Sriram; Lauren P. Shearman; David R. Weaver; Xiaowei Jin; Elizabeth S. Maywood; Michael H. Hastings; Steven M. Reppert

We determined that two mouse cryptochrome genes, mCry1 and mCry2, act in the negative limb of the clock feedback loop. In cell lines, mPER proteins (alone or in combination) have modest effects on their cellular location and ability to inhibit CLOCK:BMAL1 -mediated transcription. This suggested cryptochrome involvement in the negative limb of the feedback loop. Indeed, mCry1 and mCry2 RNA levels are reduced in the central and peripheral clocks of Clock/Clock mutant mice. mCRY1 and mCRY2 are nuclear proteins that interact with each of the mPER proteins, translocate each mPER protein from cytoplasm to nucleus, and are rhythmically expressed in the suprachiasmatic circadian clock. Luciferase reporter gene assays show that mCRY1 or mCRY2 alone abrogates CLOCK:BMAL1-E box-mediated transcription. The mPER and mCRY proteins appear to inhibit the transcriptional complex differentially.


Nature | 1997

Role of cytosolic phospholipase A2 in allergic response and parturition

Naonori Uozumi; Kazuhiko Kume; Takahide Nagase; Noriaki Nakatani; Satoshi Ishii; Fumi Tashiro; Yoshinori Komagata; Kazushige Maki; Koichi Ikuta; Yasuyoshi Ouchi; Jun-ichi Miyazaki; Takao Shimizu

Phospholipase A2 (PLA2) comprises a superfamily of enzymes that hydrolyse the ester bond of phospholipids at the sn-2 position. Among the members of this superfamily, cytosolic PLA2 has attracted attention because it preferentially hydrolyses arachidonoyl phospholipids and is activated by submicromolar concentrations of Ca2+ ions and by phosphorylation by mitogen-activated protein kinases (MAP kinases). Here we investigate the function of cytosolic PLA2 in vivo by using homologous recombination to generate mice deficient in this enzyme. These mice showed a marked decrease in their production of eicosanoids and platelet-activating factor in peritoneal macrophages. Their ovalbumin-induced anaphylactic responses were significantly reduced, as was their bronchial reactivity to methacholine. Female mutant mice failed to deliver offspring, but these could be rescued by administration of a progesterone-receptor antagonist to the mother at term. Considered together with previous findings, our results indicate that cytosolic PLA2 plays a non-redundant role in allergic responses and reproductive physiology.


The Journal of Neuroscience | 2005

Dopamine Is a Regulator of Arousal in the Fruit Fly

Kazuhiko Kume; Shoen Kume; Sang Ki Park; Jay Hirsh; F. Rob Jackson

Sleep and arousal are known to be regulated by both homeostatic and circadian processes, but the underlying molecular mechanisms are not well understood. It has been reported that the Drosophila rest/activity cycle has features in common with the mammalian sleep/wake cycle, and it is expected that use of the fly genetic model will facilitate a molecular understanding of sleep and arousal. Here, we report the phenotypic characterization of a Drosophila rest/activity mutant known as fumin (fmn). We show that fmn mutants have abnormally high levels of activity and reduced rest (sleep); genetic mapping, molecular analyses, and phenotypic rescue experiments demonstrate that these phenotypes result from mutation of the Drosophila dopamine transporter gene. Consistent with the rest phenotype, fmn mutants show enhanced sensitivity to mechanical stimuli and a prolonged arousal once active, indicating a decreased arousal threshold. Strikingly,fmn mutants do not show significant rebound in response to rest deprivation as is typical for wild-type flies, nor do they show decreased life span. These results provide direct evidence that dopaminergic signaling has a critical function in the regulation of insect arousal.


Nature Immunology | 2000

Acute lung injury by sepsis and acid aspiration: a key role for cytosolic phospholipase A2.

Takahide Nagase; Naonori Uozumi; Satoshi Ishii; Kazuhiko Kume; Takashi Izumi; Yasuyoshi Ouchi; Takao Shimizu

Adult respiratory distress syndrome (ARDS) is characterized by acute lung injury with a high mortality rate and yet its mechanism is poorly understood. Sepsis syndrome and acid aspiration are the most frequent causes of ARDS, leading to increased lung permeability, enhanced polymorphonuclear neutrophil (PMN) sequestration and respiratory failure. Using a murine model of acute lung injury induced by septic syndrome or acid aspiration, we investigated the role of cytosolic phospholipase A2 (cPLA2) in ARDS. We found that disruption of the gene encoding cPLA2 significantly reduced pulmonary edema, PMN sequestration and deterioration of gas exchange caused by lipopolysaccharide and zymosan administration. Acute lung injury induced by acid aspiration was similarly reduced in mice with a disrupted cpla2 gene. Our observations suggest that cPLA2 is a mediator of acute lung injury induced by sepsis syndrome or acid aspiration. Thus, the inhibition of cPLA2-initiated pathways may provide a therapeutic approach to acute lung injury, for which no pharmaceutical agents are currently effective.


Neuron | 2002

Drosophila fragile X protein, DFXR, regulates neuronal morphology and function in the brain.

Joannella Morales; P. Robin Hiesinger; Andrew J. Schroeder; Kazuhiko Kume; Patrik Verstreken; F. Rob Jackson; David L. Nelson; Bassem A. Hassan

Mental retardation is a pervasive societal problem, 25 times more common than blindness for example. Fragile X syndrome, the most common form of inherited mental retardation, is caused by mutations in the FMR1 gene. Fragile X patients display neurite morphology defects in the brain, suggesting that this may be the basis of their mental retardation. Drosophila contains a single homolog of FMR1, dfxr (also called dfmr1). We analyzed the role of dfxr in neurite development in three distinct neuronal classes. We find that DFXR is required for normal neurite extension, guidance, and branching. dfxr mutants also display strong eclosion failure and circadian rhythm defects. Interestingly, distinct neuronal cell types show different phenotypes, suggesting that dfxr differentially regulates diverse targets in the brain.


Journal of Biological Rhythms | 2003

Gender Dimorphism in the Role of cycle (BMAL1) in Rest, Rest Regulation, and Longevity in Drosophila melanogaster

Joan C. Hendricks; Sumei Lu; Kazuhiko Kume; Jerry C. P. Yin; Zhaohai Yang; Amita Sehgal

The central clock is generally thought to provide timing information for rest/activity but not to otherwise participate in regulation of these states. To test the hypothesis that genes that are components of the molecular clock also regulate rest, the authors quantified the duration and intensity of consolidated rest and activity for the four viable Drosophila mutations of the central clock that lead to arrhythmic locomotor behavior and for the pdf mutant that lacks pigment dispersing factor, an output neuropeptide. Only the cycle (cyc 0¹) and Clock (Clk Jrk) mutants had abnormalities that mapped to the mutant locus, namely, decreased consolidated rest and grossly extended periods of activity. All mutants with the exception of the cyc 0¹ fly exhibited a qualitatively normal compensatory rebound after rest deprivation. This abnormal response in cyc 0¹ was sexually dimorphic, being reduced or absent in males and exaggerated in females. Finally, the cyc 0¹ mutation shortened the life span of male flies. These data indicate that cycle regulates rest and life span in male Drosophila.


Nature Neuroscience | 2012

Identification of a dopamine pathway that regulates sleep and arousal in Drosophila

Taro Ueno; Jun Tomita; Hiromu Tanimoto; Keita Endo; Kei Ito; Shoen Kume; Kazuhiko Kume

Sleep is required to maintain physiological functions, including memory, and is regulated by monoamines across species. Enhancement of dopamine signals by a mutation in the dopamine transporter (DAT) decreases sleep, but the underlying dopamine circuit responsible for this remains unknown. We found that the D1 dopamine receptor (DA1) in the dorsal fan-shaped body (dFSB) mediates the arousal effect of dopamine in Drosophila. The short sleep phenotype of the DAT mutant was completely rescued by an additional mutation in the DA1 (also known as DopR) gene, but expression of wild-type DA1 in the dFSB restored the short sleep phenotype. We found anatomical and physiological connections between dopamine neurons and the dFSB neuron. Finally, we used mosaic analysis with a repressive marker and found that a single dopamine neuron projecting to the FSB activated arousal. These results suggest that a local dopamine pathway regulates sleep.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Behavioral consequences of dopamine deficiency in the Drosophila central nervous system

Thomas Riemensperger; Guillaume Isabel; Hélène Coulom; Kirsa Neuser; Laurent Seugnet; Kazuhiko Kume; Magali Iché-Torres; Marlène Cassar; Roland Strauss; Thomas Preat; Jay Hirsh; Serge Birman

The neuromodulatory function of dopamine (DA) is an inherent feature of nervous systems of all animals. To learn more about the function of neural DA in Drosophila, we generated mutant flies that lack tyrosine hydroxylase, and thus DA biosynthesis, selectively in the nervous system. We found that DA is absent or below detection limits in the adult brain of these flies. Despite this, they have a lifespan similar to WT flies. These mutants show reduced activity, extended sleep time, locomotor deficits that increase with age, and they are hypophagic. Whereas odor and electrical shock avoidance are not affected, aversive olfactory learning is abolished. Instead, DA-deficient flies have an apparently “masochistic” tendency to prefer the shock-associated odor 2 h after conditioning. Similarly, sugar preference is absent, whereas sugar stimulation of foreleg taste neurons induces normal proboscis extension. Feeding the DA precursor l-DOPA to adults substantially rescues the learning deficit as well as other impaired behaviors that were tested. DA-deficient flies are also defective in positive phototaxis, without alteration in visual perception and optomotor response. Surprisingly, visual tracking is largely maintained, and these mutants still possess an efficient spatial orientation memory. Our findings show that flies can perform complex brain functions in the absence of neural DA, whereas specific behaviors involving, in particular, arousal and choice require normal levels of this neuromodulator.


Cell Metabolism | 2014

Methionine metabolism regulates maintenance and differentiation of human pluripotent stem cells.

Nobuaki Shiraki; Yasuko Shiraki; Tomonori Tsuyama; Fumiaki Obata; Masayuki Miura; Genta Nagae; Hiroyuki Aburatani; Kazuhiko Kume; Fumio Endo; Shoen Kume

Mouse embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are in a high-flux metabolic state, with a high dependence on threonine catabolism. However, little is known regarding amino acid metabolism in human ESCs/iPSCs. We show that human ESCs/iPSCs require high amounts of methionine (Met) and express high levels of enzymes involved in Met metabolism. Met deprivation results in a rapid decrease in intracellular S-adenosylmethionine (SAM), triggering the activation of p53-p38 signaling, reducing NANOG expression, and poising human iPSC/ESCs for differentiation, follow by potentiated differentiation into all three germ layers. However, when exposed to prolonged Met deprivation, the cells undergo apoptosis. We also show that human ESCs/iPSCs have regulatory systems to maintain constant intracellular Met and SAM levels. Our findings show that SAM is a key regulator for maintaining undifferentiated pluripotent stem cells and regulating their differentiation.


The EMBO Journal | 1997

Bronchial hyperreactivity, increased endotoxin lethality and melanocytic tumorigenesis in transgenic mice overexpressing platelet‐activating factor receptor

Satoshi Ishii; Takahide Nagase; Fumi Tashiro; Koichi Ikuta; Sayuri Sato; Iwao Waga; Kazuhiko Kume; Jun-ichi Miyazaki; Takao Shimizu

Although platelet‐activating factor (PAF) has been shown to exert pleiotropic effects on isolated cells or tissues, controversy still exists as to whether it plays significant pathophysiological roles in vivo. To answer this question, we established transgenic mice overexpressing a guinea‐pig PAF receptor (PAFR). The transgenic mice showed a bronchial hyperreactivity to methacholine and an increased mortality when exposed to bacterial endotoxin. An aberrant melanogenesis and proliferative abnormalities in the skin were also observed in the transgenic mice, some of which spontaneously bore melanocytic tumors in the dermis after aging. Thus, PAFR transgenic mice proved to be a useful model for studying the basic pathophysiology of bronchial asthma and endotoxin‐induced death, and screening of therapeutics for these disorders. Furthermore, our findings provide new insights regarding the role of PAF in the morphogenesis of dermal tissues as well as the mitogenic activity of PAF and PAFR in vivo.

Collaboration


Dive into the Kazuhiko Kume's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takao Shimizu

Tokyo Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge