Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dale L. Barnard is active.

Publication


Featured researches published by Dale L. Barnard.


Antiviral Research | 2009

T-705 (favipiravir) and related compounds: novel broad-spectrum inhibitors of RNA viral infections.

Yousuke Furuta; Kazumi Takahashi; Kimiyasu Shiraki; Kenichi Sakamoto; Donald F. Smee; Dale L. Barnard; Brian B. Gowen; Justin G. Julander; John D. Morrey

Abstract A series of pyrazinecarboxamide derivatives T-705 (favipiravir), T-1105 and T-1106 were discovered to be candidate antiviral drugs. These compounds have demonstrated good activity in treating viral infections in laboratory animals caused by various RNA viruses, including influenza virus, arenaviruses, bunyaviruses, West Nile virus (WNV), yellow fever virus (YFV), and foot-and-mouth disease virus (FMDV). Treatment has in some cases been effective when initiated up to 5–7 days after virus infection, when the animals already showed signs of illness. Studies on the mechanism of action of T-705 have shown that this compound is converted to the ribofuranosyltriphosphate derivative by host enzymes, and this metabolite selectively inhibits the influenza viral RNA-dependent RNA polymerase without cytotoxicity to mammalian cells. Interestingly, these compounds do not inhibit host DNA and RNA synthesis and inosine 5′-monophosphate dehydrogenase (IMPDH) activity. From in vivo studies using several animal models, the pyrazinecarboxamide derivatives were found to be effective in protecting animals from death, reducing viral burden, and limiting disease manifestations, even when treatment was initiated after virus inoculation. Importantly, T-705 imparts its beneficial antiviral effects without significant toxicity to the host. Prompt development of these compounds is expected to provide effective countermeasures against pandemic influenza virus and several bioweapon threats, all of which are of great global public health concern given the current paucity of highly effective broad-spectrum drugs.


Science Translational Medicine | 2010

Targeting Robo4-dependent Slit signaling to survive the cytokine storm in sepsis and influenza

Nyall R. London; Weiquan Zhu; Fernando A. Bozza; Matthew C. Smith; Daniel M. Greif; Lise K. Sorensen; Luming Chen; Yuuki Kaminoh; Aubrey C. Chan; Samuel F. Passi; Craig W. Day; Dale L. Barnard; Guy A. Zimmerman; Mark A. Krasnow; Dean Y. Li

Blunting increased vascular permeability caused by an infection-induced cytokine storm with a Slit ligand increased survival in rodent models of sepsis and viral infection. Batten Down the Vascular Hatches Against the Storm An organism under stress from a massive infection or burn reacts strongly to protect itself. Body-wide inflammation is triggered, but this response can have negative effects of its own. These can include a fast heart rate, abnormally high temperature, and a marked discharge of cytokines from the immune system, called a cytokine storm. Death often occurs in these patients, a result of the failure of multiple organs. In mice, London et al. now inhibit one of the consequences of a cytokine storm—leakage from the vasculature into the intercellular space—and can thereby prevent the lethal effects of bacterial and viral infection. Cytokines released during a cytokine storm, including tumor necrosis factor and interleukin-1β, act on the cells of the vascular lining, weakening their junctions and allowing cells and fluid to leak in. Because the resulting edema is one cause of organ failure, London et al. have targeted this process. They show that an abbreviated version of a soluble ligand, called Slit, when added to cultured vascular endothelial cells, can strengthen the cell-cell contacts. Acting by increasing the amount of a cell adhesion protein, vascular endothelial cadherin, on the cell surface, Slit reduced the permeability of the endothelial cell layer. This was also true in whole animals; the authors injected mice with an immunogenic bacterial protein to simulate infection and then measured vascular leakage. They then tested whether Slit could help mice survive a severe infection. Whether infected with gut bacteria or H5N1 flu, treatment of the mice with the abbreviated Slit molecule improved their odds of surviving. Further, the ability of Slit to reduce vascular permeability in the face of a severe infection depended on another signaling molecule, the Robo4 receptor. Sepsis and other illnesses in which a cytokine storm is triggered are difficult to treat effectively. The standard of care is rapid antibiotic administration and supportive treatment of patients, but this is too often ineffective. The approach described here by London et al. may yield another tool to fight the cytokine storm, a way to strengthen the ability of the body to withstand its own assault. The innate immune system provides a first line of defense against invading pathogens by releasing multiple inflammatory cytokines, such as interleukin-1β and tumor necrosis factor–α, which directly combat the infectious agent and recruit additional immune responses. This exuberant cytokine release paradoxically injures the host by triggering leakage from capillaries, tissue edema, organ failure, and shock. Current medical therapies target individual pathogens with antimicrobial agents or directly either blunt or boost the host’s immune system. We explored a third approach: activating with the soluble ligand Slit an endothelium-specific, Robo4-dependent signaling pathway that strengthens the vascular barrier, diminishing deleterious aspects of the host’s response to the pathogen-induced cytokine storm. This approach reduced vascular permeability in the lung and other organs and increased survival in animal models of bacterial endotoxin exposure, polymicrobial sepsis, and H5N1 influenza. Thus, enhancing the resilience of the host vascular system to the host’s innate immune response may provide a therapeutic strategy for treating multiple infectious agents.


Antimicrobial Agents and Chemotherapy | 2001

Cyclopentane Neuraminidase Inhibitors with Potent In Vitro Anti-Influenza Virus Activities

Donald F. Smee; John H. Huffman; Ann C Morrison; Dale L. Barnard; Robert W. Sidwell

ABSTRACT A novel series of cyclopentane derivatives have been found to exhibit potent and selective inhibitory effects on influenza virus neuraminidase. These compounds, designated RWJ-270201, BCX-1827, BCX-1898, and BCX-1923, were tested in parallel with zanamivir and oseltamivir carboxylate against a spectrum of influenza A (H1N1, H3N2, and H5N1) and influenza B viruses in MDCK cells. Inhibition of viral cytopathic effect ascertained visually and by neutral red dye uptake was used, with 50% effective (virus-inhibitory) concentrations (EC50) determined. Against the H1N1 viruses A/Bayern/07/95, A/Beijing/262/95, A/PR/8/34, and A/Texas/36/91, EC50s (determined by neutral red assay) of the novel compounds were ≤1.5 μM. Twelve strains of H3N2 and two strains of avian H5N1 viruses were inhibited at <0.3 μM. Influenza B/Beijing/184/93 and B/Harbin/07/94 viruses were inhibited at <0.2 μM, with three other B virus strains inhibited at 0.8 to 8 μM. The novel inhibitors were comparable in potency to (or slightly more potent than) zanamivir and oseltamivir carboxylate. No cytotoxicity was seen with the compounds at concentrations of ≤1 mM in cell proliferation assays. The antiviral activity of RWJ-270201, chosen for clinical development, was studied in greater detail. Its potency and that of oseltamivir carboxylate decreased with increasing multiplicity of virus infection. Time-of-addition studies indicated that treatment with either compound needed to begin 0 to 12 h after virus exposure for optimal activity. Exposure of cells to RWJ-270201 caused most of the virus to remain cell associated, with extracellular virus decreasing in a concentration-dependent manner. This is consistent with its effect as a neuraminidase inhibitor. RWJ-270201 shows promise in the treatment of human influenza virus infections.


Antiviral Research | 1998

Inhibition of influenza virus infections in mice by GS4104, an orally effective influenza virus neuraminidase inhibitor.

Robert W. Sidwell; John H. Huffman; Dale L. Barnard; Kevin W. Bailey; Min-Hui Wong; Ann Morrison; Timothy Syndergaard; Choung U. Kim

The carbocyclic transition state sialic acid analog GS4071 ([3R,4R,5S]-4-acetamido-5-amino-3-[1-ethylpropoxy]-1-cyclohexane-1 -carboxylic acid), a potent influenza virus neuraminidase inhibitor, was highly inhibitory to influenza A/NWS/33 (H1N1), A/Victoria/3/75 (H3N2), A/Shangdong/09/93 (H3N2) and B/Hong Kong/5/72 viruses in Madin Darby canine kidney (MDCK) cells. The 50% effective concentrations in these experiments ranged from 1.8 to 59.5 microM, with no cytotoxicity evident at 1000 microM, using inhibition of viral cytopathic effect determined visually and by neutral red dye uptake. The ethyl ester prodrug of GS4071, GS4104, administered by oral gavage (p.o.), had significant inhibitory effects on infections in mice induced by these viruses. Antiviral effects were seen as prevention of death, increase in mean day to death, inhibition of decline of arterial oxygen saturation, lessened lung consolidation and inhibition of infectious virus recovered from the lungs. No toxicity was seen in dosages up to 100 mg/kg/day (highest evaluated). Comparison experiments run versus the influenza A (H1N1) virus-induced infection using GS4104, GS4071 and the neuraminidase inhibitor zanamivir (GG167, 4-guanidino-Neu5Ac2en), all administered p.o., indicated a 10-fold or greater potency for inhibiting the infection by GS4104. The minimum effective dosage for GS4104 was 0.1 mg/kg/day, with the compound administered twice daily for 5 days beginning 4 h pre-virus exposure. Oral therapy with GS4104 could be delayed from 48 to at least 60 h after exposure of mice to influenza A (H1N1) virus and still render a significant antiviral effect, the time of delay being dependent on the viral challenge dose. Intranasal instillation of GS4071 and GG167 to mice infected with influenza virus was highly inhibitory to the infection, the minimum effective dosages to significantly prevent death being 0.01 mg/kg/day for GS4071 and 0.1 mg/kg/day for GG167. Caging of infected mice treated with 10 mg/kg/day of GS4104 with infected saline-treated animals did not transfer any influenza-inhibitory effect to the latter animals. These data provide strong evidence of the potential of orally administered GS4104 for treatment of influenza A and B virus infections in humans.


Antiviral Research | 2009

Animal models for the study of influenza pathogenesis and therapy

Dale L. Barnard

Abstract Influenza A viruses causes a variety of illnesses in humans. The most common infection, seasonal influenza, is usually a mild, self-limited febrile syndrome, but it can be more severe in infants, the elderly, and immunodeficient persons, in whom it can progress to severe viral pneumonitis or be complicated by bacterial superinfection, leading to pneumonia and sepsis. Seasonal influenza also occasionally results in neurologic complications. Rarely, viruses that have spread from wild birds to domestic poultry can infect humans; such “avian influenza” can range in severity from mild conjunctivitis through the rapidly lethal disease seen in persons infected with the H5N1 virus that first emerged in Hong Kong in 1997. To develop effective therapies for this wide range of diseases, it is essential to have laboratory animal models that replicate the major features of illness in humans. This review describes models currently in use for elucidating influenza pathogenesis and evaluating new therapeutic agents.


Antiviral Research | 1992

Evaluation of the antiviral activity of anthraquinones, anthrones and anthraquinone derivatives against human cytomegalovirus

Dale L. Barnard; John H. Huffman; Janis L.B. Morris; Steven G. Wood; Bronwyn G. Hughes; Robert W. Sidwell

A number of anthraquinones, anthrones and anthraquinone derivatives were evaluated for antiviral activity against human cytomegalovirus (HCMV) as well as for cytotoxicity. Of those compounds evaluated, quinalizarin, emodin, rhein, hypericin, protohypericin, alizarin, emodin bianthrone and emodin anthrone showed antiviral activity against a normal laboratory HCMV strain, AD-169. When tested against a ganciclovir-resistant strain of HCMV, the EC50 values for quinalizarin, rhein and alizarin were superior to the values obtained for the AD-169 strain of HCMV. These results suggest that these compounds will be useful as prototypes for synthesizing a class of anti-HCMV drugs that are effective against ganciclovir-sensitive and -resistant strains of HCMV.


Antimicrobial Agents and Chemotherapy | 2007

Efficacy of Orally Administered T-705 on Lethal Avian Influenza A (H5N1) Virus Infections in Mice

Robert W. Sidwell; Dale L. Barnard; Craig W. Day; Donald F. Smee; Kevin W. Bailey; Min-Hui Wong; John D. Morrey; Yousuke Furuta

ABSTRACT T-705 (6-fluoro-3-hydroxy-2-pyrazinecarboxamide) was inhibitory to four strains of avian H5N1 influenza virus in MDCK cells, with the 90% effective concentrations ranging from 1.3 to 7.7 μM, as determined by a virus yield reduction assay. The efficacy was less than that exerted by oseltamivir carboxylate or zanamivir but was greater than that exerted by ribavirin. Experiments with mice lethally infected with influenza A/Duck/MN/1525/81 (H5N1) virus showed that T-705 administered per os once, twice, or four times daily for 5 days beginning 1 h after virus exposure was highly inhibitory to the infection. Dosages from 30 to 300 mg/kg of body weight/day were well tolerated; each prevented death, lessened the decline of arterial oxygen saturation (SaO2), and inhibited lung consolidation and lung virus titers. Dosages from 30 to 300 mg/kg/day administered once or twice daily also significantly prevented the death of the mice. Oseltamivir (20 mg/kg/day), administered per os twice daily for 5 days, was tested in parallel in two experiments; it was only weakly effective against the infection. The four-times-daily T-705 treatments at 300 mg/kg/day could be delayed until 96 h after virus exposure and still significantly inhibit the infection. Single T-705 treatments administered up to 60 h after virus exposure also prevented death and the decline of SaO2. Characterization of the pathogenesis of the duck influenza H5N1 virus used in these studies was undertaken; although the virus was highly pathogenic to mice, it was less neurotropic than has been described for clinical isolates of the H5N1 virus. These data indicate that T-705 may be useful for the treatment of avian influenza virus infections.


Antimicrobial Agents and Chemotherapy | 2001

In Vivo Influenza Virus-Inhibitory Effects of the Cyclopentane Neuraminidase Inhibitor RWJ-270201

Robert W. Sidwell; Donald F. Smee; John H. Huffman; Dale L. Barnard; Kevin W. Bailey; John D. Morrey; Yarlagadda S. Babu

ABSTRACT The cyclopentane influenza virus neuraminidase inhibitor RWJ-270201 was evaluated against influenza A/NWS/33 (H1N1), A/Shangdong/09/93 (H3N2), A/Victoria/3/75 (H3N2), and B/Hong Kong/05/72 virus infections in mice. Treatment was by oral gavage twice daily for 5 days beginning 4 h pre-virus exposure. The influenza virus inhibitor oseltamivir was run in parallel, and ribavirin was included in studies with the A/Shangdong and B/Hong Kong viruses. RWJ-270201 was inhibitory to all infections using doses as low as 1 mg/kg/day. Oseltamivir was generally up to 10-fold less effective than RWJ-270201. Ribavirin was also inhibitory but was less tolerated by the mice at the 75-mg/kg/day dose used. Disease-inhibitory effects included prevention of death, lessening of decline of arterial oxygen saturation, inhibition of lung consolidation, and reduction in lung virus titers. RWJ-270201 and oseltamivir, at doses of 10 and 1 mg/kg/day each, were compared with regard to their effects on daily lung parameters in influenza A/Shangdong/09/93 virus-infected mice. Maximum virus titer inhibition was seen on day 1, with RWJ-270201 exhibiting the greater inhibitory effect, a titer reduction of >104 cell culture 50% infective doses (CCID50)/g. By day 8, the lung virus titers in mice treated with RWJ-270201 had declined to 101.2 CCID50/g, whereas titers from oseltamivir-treated animals were >103CCID50/g. Mean lung consolidation was also higher in the oseltamivir-treated animals on day 8. Both neuraminidase inhibitors were well tolerated by the mice. RWJ-270201 was nontoxic at doses as high as 1,000 mg/kg/day. These data indicate potential for the oral use of RWJ-270201 in the treatment of influenza virus infections in humans.


Phytomedicine | 1994

SP-303, an antiviral oligomeric proanthocyanidin from the latex of Croton lechleri (Sangre de Drago).

R. Ubillas; S.D. Jolad; Reimar C. Bruening; M.R. Kernan; S.R. King; D.F. Sesin; M. Barrett; C.A. Stoddart; T. Flaster; J. Kuo; F. Ayala; E. Meza; M. Castañel; D. Mcmeekin; E. Rozhon; Michael S. Tempesta; Dale L. Barnard; J. Huffman; Donald F. Smee; R. Sidwell; K. Soike; A. Brazier; S. Safrin; Ron Orlando; Peter T.M. Kenny; Nikolina Berova; Koji Nakanishi

SP-303, a large proanthocyanidin oligomer isolated from the latex of the plant species Croton lechleri (Eupborbiaceae) has demonstrated broad activity against a variety of DNA and RNA viruses. In cell culture, SP-303 exhibits potent activity against isolates and laboratory strains of respiratory syncytial virus (RSV), influenza A virus (FLU-A) and parainfluenza virus (PIV). Parallel assays of SP-303 and ribavirin showed comparable activity against these viruses. SP-303 also exhibits significant inhibitory activity against herpesvirus (HSV) types 1 and 2, including herpesviruses resistant to acyclovir and foscarnet. Inhibition was also observed against hepatitis A and B viruses. The antiviral mechanism of SP-303 seems to derive from its direct binding to components of the viral envelope, resulting in inhibition of viral attachment and penetration of the plasma membrane. Antiviral effects of SP-303 were measured by three distinct methods: CPE, MTT and precursor uptake/incorporation. Cytotoxicity endpoints were markedly greater than the respective antiviral endpoints. SP-303 exhibited activity in RSV-infected cotton rats and African green monkeys, PIV-3-infected cotton rats, HSV-2 infected mice and guinea pigs and FLU-A-infected mice. The most successful routes of SP-303 administration for producing efficacy were: topical application to HSV-2- genital lesions in mice and guinea pigs, aerosol inhalation to FLU-A-infected mice and PIV-3-infected cotton rats, and oral dosage to RSV-infected cotton rats. A variety of toxicological evaluations demonstrated the safety of SP-303, particularly orally, which was predictable, since condensed tannins are a common dietary component. It is notable that the larger proanthocyanidins as a class have high antiviral activity, whereas most of the monomers are inactive. Clinical trials are ongoing to evaluate SP-303 as a therapeutic antiviral agent.


Journal of Virology | 2010

Broad-Spectrum In Vitro Activity and In Vivo Efficacy of the Antiviral Protein Griffithsin against Emerging Viruses of the Family Coronaviridae

Barry R. O'Keefe; Barbara Giomarelli; Dale L. Barnard; Shilpa R. Shenoy; Paul K.S. Chan; James B. McMahon; Kenneth E. Palmer; Brian W. Barnett; David K. Meyerholz; Christine L. Wohlford-Lenane; Paul B. McCray

ABSTRACT Viruses of the family Coronaviridae have recently emerged through zoonotic transmission to become serious human pathogens. The pathogenic agent responsible for severe acute respiratory syndrome (SARS), the SARS coronavirus (SARS-CoV), is a member of this large family of positive-strand RNA viruses that cause a spectrum of disease in humans, other mammals, and birds. Since the publicized outbreaks of SARS in China and Canada in 2002-2003, significant efforts successfully identified the causative agent, host cell receptor(s), and many of the pathogenic mechanisms underlying SARS. With this greater understanding of SARS-CoV biology, many researchers have sought to identify agents for the treatment of SARS. Here we report the utility of the potent antiviral protein griffithsin (GRFT) in the prevention of SARS-CoV infection both in vitro and in vivo. We also show that GRFT specifically binds to the SARS-CoV spike glycoprotein and inhibits viral entry. In addition, we report the activity of GRFT against a variety of additional coronaviruses that infect humans, other mammals, and birds. Finally, we show that GRFT treatment has a positive effect on morbidity and mortality in a lethal infection model using a mouse-adapted SARS-CoV and also specifically inhibits deleterious aspects of the host immunological response to SARS infection in mammals.

Collaboration


Dive into the Dale L. Barnard's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge