Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Donald F. Smee is active.

Publication


Featured researches published by Donald F. Smee.


Antiviral Research | 2009

T-705 (favipiravir) and related compounds: novel broad-spectrum inhibitors of RNA viral infections.

Yousuke Furuta; Kazumi Takahashi; Kimiyasu Shiraki; Kenichi Sakamoto; Donald F. Smee; Dale L. Barnard; Brian B. Gowen; Justin G. Julander; John D. Morrey

Abstract A series of pyrazinecarboxamide derivatives T-705 (favipiravir), T-1105 and T-1106 were discovered to be candidate antiviral drugs. These compounds have demonstrated good activity in treating viral infections in laboratory animals caused by various RNA viruses, including influenza virus, arenaviruses, bunyaviruses, West Nile virus (WNV), yellow fever virus (YFV), and foot-and-mouth disease virus (FMDV). Treatment has in some cases been effective when initiated up to 5–7 days after virus infection, when the animals already showed signs of illness. Studies on the mechanism of action of T-705 have shown that this compound is converted to the ribofuranosyltriphosphate derivative by host enzymes, and this metabolite selectively inhibits the influenza viral RNA-dependent RNA polymerase without cytotoxicity to mammalian cells. Interestingly, these compounds do not inhibit host DNA and RNA synthesis and inosine 5′-monophosphate dehydrogenase (IMPDH) activity. From in vivo studies using several animal models, the pyrazinecarboxamide derivatives were found to be effective in protecting animals from death, reducing viral burden, and limiting disease manifestations, even when treatment was initiated after virus inoculation. Importantly, T-705 imparts its beneficial antiviral effects without significant toxicity to the host. Prompt development of these compounds is expected to provide effective countermeasures against pandemic influenza virus and several bioweapon threats, all of which are of great global public health concern given the current paucity of highly effective broad-spectrum drugs.


Schizophrenia Research | 2008

Maternal infection leads to abnormal gene regulation and brain atrophy in mouse offspring: implications for genesis of neurodevelopmental disorders.

S. Hossein Fatemi; Teri J. Reutiman; Timothy D. Folsom; Hao Huang; Kenichi Oishi; Susumu Mori; Donald F. Smee; David A. Pearce; Christine Winter; Reinhard Sohr; Georg Juckel

Prenatal viral infection has been associated with development of schizophrenia and autism. Our laboratory has previously shown that viral infection causes deleterious effects on brain structure and function in mouse offspring following late first trimester (E9) administration of influenza virus. We hypothesized that late second trimester infection (E18) in mice may lead to a different pattern of brain gene expression and structural defects in the developing offspring. C57BL6J mice were infected on E18 with a sublethal dose of human influenza virus or sham-infected using vehicle solution. Male offsping of the infected mice were collected at P0, P14, P35 and P56, their brains removed and prefrontal cortex, hippocampus and cerebellum dissected and flash frozen. Microarray, qRT-PCR, DTI and MRI scanning, western blotting and neurochemical analysis were performed to detect differences in gene expression and brain atrophy. Expression of several genes associated with schizophrenia or autism including Sema3a, Trfr2 and Vldlr were found to be altered as were protein levels of Foxp2. E18 infection of C57BL6J mice with a sublethal dose of human influenza virus led to significant gene alterations in frontal, hippocampal and cerebellar cortices of developing mouse progeny. Brain imaging revealed significant atrophy in several brain areas and white matter thinning in corpus callosum. Finally, neurochemical analysis revealed significantly altered levels of serotonin (P14, P35), 5-Hydroxyindoleacetic acid (P14) and taurine (P35). We propose that maternal infection in mouse provides an heuristic animal model for studying the environmental contributions to genesis of schizophrenia and autism, two important examples of neurodevelopmental disorders.


The Journal of Infectious Diseases | 2000

Cidofovir Protects Mice against Lethal Aerosol or Intranasal Cowpox Virus Challenge

Mike Bray; Mark Martinez; Donald F. Smee; Debbie Kefauver; Elizabeth Thompson; John W. Huggins

The efficacy of cidofovir for treatment of cowpox virus infection in BALB/c mice was investigated in an effort to evaluate new therapies for virulent orthopoxvirus infections of the respiratory tract in a small animal model. Exposure to 2(-5)x10(6) pfu of cowpox virus by aerosol or intranasally (inl) was lethal in 3- to 7-week-old animals. One inoculation of 100 mg/kg cidofovir on day 0, 2, or 4, with respect to aerosol infection, resulted in 90%-100% survival. Treatment on day 0 reduced peak pulmonary virus titers 10- to 100-fold, reduced the severity of viral pneumonitis, and prevented pulmonary hemorrhage. The same dose on day -6 to 2 protected 80%-100% of inl infected mice, whereas 1 inoculation on day -16 to -8 or day 3 to 6 was partially protective. Cidofovir delayed but did not prevent the death of inl infected mice with severe combined immunodeficiency. Treatment at the time of tail scarification with vaccinia virus did not block vaccination efficacy.


Antimicrobial Agents and Chemotherapy | 1983

Anti-herpesvirus activity of the acyclic nucleoside 9-(1,3-dihydroxy-2-propoxymethyl)guanine.

Donald F. Smee; J C Martin; J P Verheyden; T R Matthews

The antiherpetic effects of a novel purine acyclic nucleoside, 9-(1,3-dihydroxy-2-propoxymethyl)guanine (DHPG), were compared with those of acyclovir in cell cultures and in mice. The modes of action of DHPG and acyclovir were similar in that herpes thymidine kinase phosphorylated each compound, and both agents selectively inhibited viral over host cell DNA synthesis. In 50% plaque reduction assays in Vero cells, the drugs inhibited herpes simplex virus types 1 and 2 thymidine kinase-positive strains at 0.2 to 2.4 microM. DHPG was markedly more active than acyclovir against human cytomegalovirus (50% inhibitory doses were 7 and 95 microM, respectively). Each nucleoside inhibited uninfected cell macromolecule synthesis and cell proliferation at concentrations far above those required to inhibit herpes simplex virus replication. Although the two compounds had many similarities in their behavior in vitro, the important difference was the superior performance of DHPG against herpesvirus-induced encephalitis and vaginitis in vivo. Thus, mortality in mice infected with herpesvirus type 2 was reduced 50% by daily doses of 7 to 10 mg of DHPG/kg, whereas an equally effective daily dose of acyclovir was approximately 500 mg/kg. DHPG at a daily dose of 50 mg/kg was also superior to acyclovir at 100 mg/kg per day in its inhibition of herpetic vaginal lesions in mice.


Antimicrobial Agents and Chemotherapy | 2006

Sialidase Fusion Protein as a Novel Broad-Spectrum Inhibitor of Influenza Virus Infection

Michael P. Malakhov; Laura M. Aschenbrenner; Donald F. Smee; Miles K. Wandersee; Robert W. Sidwell; Larisa V. Gubareva; Vasiliy P. Mishin; Frederick G. Hayden; Do Hyong Kim; Alice Ing; Erin R. Campbell; Mang Yu; Fang Fang

ABSTRACT Influenza is a highly infectious disease characterized by recurrent annual epidemics and unpredictable major worldwide pandemics. Rapid spread of the highly pathogenic avian H5N1 strain and escalating human infections by the virus have set off the alarm for a global pandemic. To provide an urgently needed alternative treatment modality for influenza, we have generated a recombinant fusion protein composed of a sialidase catalytic domain derived from Actinomyces viscosus fused with a cell surface-anchoring sequence. The sialidase fusion protein is to be applied topically as an inhalant to remove the influenza viral receptors, sialic acids, from the airway epithelium. We demonstrate that a sialidase fusion construct, DAS181, effectively cleaves sialic acid receptors used by both human and avian influenza viruses. The treatment provides long-lasting effect and is nontoxic to the cells. DAS181 demonstrated potent antiviral and cell protective efficacies against a panel of laboratory strains and clinical isolates of IFV A and IFV B, with virus replication inhibition 50% effective concentrations in the range of 0.04 to 0.9 nM. Mouse and ferret studies confirmed significant in vivo efficacy of the sialidase fusion in both prophylactic and treatment modes.


Antimicrobial Agents and Chemotherapy | 2001

Cyclopentane Neuraminidase Inhibitors with Potent In Vitro Anti-Influenza Virus Activities

Donald F. Smee; John H. Huffman; Ann C Morrison; Dale L. Barnard; Robert W. Sidwell

ABSTRACT A novel series of cyclopentane derivatives have been found to exhibit potent and selective inhibitory effects on influenza virus neuraminidase. These compounds, designated RWJ-270201, BCX-1827, BCX-1898, and BCX-1923, were tested in parallel with zanamivir and oseltamivir carboxylate against a spectrum of influenza A (H1N1, H3N2, and H5N1) and influenza B viruses in MDCK cells. Inhibition of viral cytopathic effect ascertained visually and by neutral red dye uptake was used, with 50% effective (virus-inhibitory) concentrations (EC50) determined. Against the H1N1 viruses A/Bayern/07/95, A/Beijing/262/95, A/PR/8/34, and A/Texas/36/91, EC50s (determined by neutral red assay) of the novel compounds were ≤1.5 μM. Twelve strains of H3N2 and two strains of avian H5N1 viruses were inhibited at <0.3 μM. Influenza B/Beijing/184/93 and B/Harbin/07/94 viruses were inhibited at <0.2 μM, with three other B virus strains inhibited at 0.8 to 8 μM. The novel inhibitors were comparable in potency to (or slightly more potent than) zanamivir and oseltamivir carboxylate. No cytotoxicity was seen with the compounds at concentrations of ≤1 mM in cell proliferation assays. The antiviral activity of RWJ-270201, chosen for clinical development, was studied in greater detail. Its potency and that of oseltamivir carboxylate decreased with increasing multiplicity of virus infection. Time-of-addition studies indicated that treatment with either compound needed to begin 0 to 12 h after virus exposure for optimal activity. Exposure of cells to RWJ-270201 caused most of the virus to remain cell associated, with extracellular virus decreasing in a concentration-dependent manner. This is consistent with its effect as a neuraminidase inhibitor. RWJ-270201 shows promise in the treatment of human influenza virus infections.


Antiviral Research | 2002

Identification of active antiviral compounds against a New York isolate of West Nile virus

John D. Morrey; Donald F. Smee; Robert W. Sidwell; Christopher K. H. Tseng

The recent West Nile virus (WNV) outbreak in the United States has increased the need to identify effective therapies for this disease. A chemotherapeutic approach may be a reasonable strategy because the virus infection is typically not chronic and antiviral drugs have been identified to be effective in vitro against other flaviviruses. A panel of 34 substances was tested against infection of a recent New York isolate of WNV in Vero cells and active compounds were also evaluated in MA-104 cells. Some of these compounds were also evaluated in Vero cells against the 1937 Uganda isolate of the WNV. Six compounds were identified to be effective against virus-induced CPE with 50% effective concentrations (EC50) less than 10 microg/ml and with a selectivity index (SI) of greater than 10. Known inhibitors of orotidine monophosphate decarboxylase and inosine monophosphate dehydrogenase involved in the synthesis of GTP, UTP, and TTP were most effective. The compounds 6-azauridine, 6-azauridine triacetate, cyclopententylcytosine (CPE-C), mycophenolic acid and pyrazofurin appeared to have the greatest activities against the New York isolate, followed by 2-thio-6-azauridine. Anti-WNV activity of 6-azauridine was confirmed by virus yield reduction assay when the assay was performed 2 days after initial infection in Vero cells. The neutral red assay mean EC50 of ribavirin was only 106 microg/ml with a mean SI of 9.4 against the New York isolate and only slightly more effective against the Uganda isolate. There were some differences in the drug sensitivities of the New York and Uganda isolates, but when comparisons were made by categorizing drugs according to their modes of action, similarities of activities between the two isolates were identified.


Antiviral Research | 2003

Viruses of the Bunya- and Togaviridae families: potential as bioterrorism agents and means of control

Robert W. Sidwell; Donald F. Smee

When considering viruses of potential importance as tools for bioterrorism, several viruses in the Bunya- and Togaviridae families have been cited. Among those in the Bunyaviridae family are Rift Valley fever, Crimean-Congo hemorrhagic fever, hanta, and sandfly fever viruses, listed in order of priority. Those particularly considered in the Togaviridae family are Venezuelan, eastern and western equine encephalitis viruses. Factors affecting the selection of these viruses are the ability for them to induce a fatal or seriously incapacitating illness, their ease of cultivation in order to prepare large volumes, their relative infectivity in human patients, their ability to be transmitted by aerosol, and the lack of measures available for their control. Each factor is fully considered in this review. Vaccines for the control of infections induced by these viruses are in varying stages of development, with none universally accepted to date. Viruses in the Bunyaviridae family are generally sensitive to ribavirin, which has been recommended as an emergency therapy for infections by viruses in this family although has not yet been FDA-approved. Interferon and interferon inducers also significantly inhibit these virus infections in animal models. Against infections induced by viruses in the Togaviridae family, interferon-alpha would appear to currently be the most useful for therapy.


Antimicrobial Agents and Chemotherapy | 2003

Potent anti-influenza activity of cyanovirin-N and interactions with viral hemagglutinin.

Barry R. O'Keefe; Donald F. Smee; Jim A. Turpin; Carrie J. Saucedo; Kirk R. Gustafson; Toshiyuki Mori; Dennis Blakeslee; Robert W. Buckheit; Michael R. Boyd

ABSTRACT The novel antiviral protein cyanovirin-N (CV-N) was initially discovered based on its potent activity against the human immunodeficiency virus (HIV). Subsequent studies identified the HIV envelope glycoproteins gp120 and gp41 as molecular targets of CV-N. More recently, mechanistic studies have shown that certain high-mannose oligosaccharides (oligomannose-8 and oligomannose-9) found on the HIV envelope glycoproteins comprise the specific sites to which CV-N binds. Such selective, carbohydrate-dependent interactions may account, at least in part, for the unusual and unexpected spectrum of antiviral activity of CV-N described herein. We screened CV-N against a broad range of respiratory and enteric viruses, as well as flaviviruses and herpesviruses. CV-N was inactive against rhinoviruses, human parainfluenza virus, respiratory syncytial virus, and enteric viruses but was moderately active against some herpesvirus and hepatitis virus (bovine viral diarrhea virus) strains (50% effective concentration [EC50] = ∼1 μg/ml) while inactive against others. Remarkably, however, CV-N and related homologs showed highly potent antiviral activity against almost all strains of influenza A and B virus, including clinical isolates and a neuraminidase inhibitor-resistant strain (EC50 = 0.004 to 0.04 μg/ml). When influenza virus particles were pretreated with CV-N, viral titers were lowered significantly (>1,000-fold). Further studies identified influenza virus hemagglutinin as a target for CV-N, showed that antiviral activity and hemagglutinin binding were correlated, and indicated that CV-N′s interactions with hemagglutinin involved oligosaccharides. These results further reveal new potential avenues for antiviral therapeutics and prophylaxis targeting specific oligosaccharide-comprised sites on certain enveloped viruses, including HIV, influenza virus, and possibly others.


PLOS ONE | 2010

Triple Combination of Amantadine, Ribavirin, and Oseltamivir Is Highly Active and Synergistic against Drug Resistant Influenza Virus Strains In Vitro

Jack Nguyen; Justin D. Hoopes; Minh Thi Hong Le; Donald F. Smee; Amy K. Patick; Dennis J. Faix; Patrick J. Blair; Menno D. de Jong; Mark N. Prichard; Gregory T. Went

The rapid emergence and subsequent spread of the novel 2009 Influenza A/H1N1 virus (2009 H1N1) has prompted the World Health Organization to declare the first pandemic of the 21st century, highlighting the threat of influenza to public health and healthcare systems. Widespread resistance to both classes of influenza antivirals (adamantanes and neuraminidase inhibitors) occurs in both pandemic and seasonal viruses, rendering these drugs to be of marginal utility in the treatment modality. Worldwide, virtually all 2009 H1N1 and seasonal H3N2 strains are resistant to the adamantanes (rimantadine and amantadine), and the majority of seasonal H1N1 strains are resistant to oseltamivir, the most widely prescribed neuraminidase inhibitor (NAI). To address the need for more effective therapy, we evaluated the in vitro activity of a triple combination antiviral drug (TCAD) regimen composed of drugs with different mechanisms of action against drug-resistant seasonal and 2009 H1N1 influenza viruses. Amantadine, ribavirin, and oseltamivir, alone and in combination, were tested against amantadine- and oseltamivir-resistant influenza A viruses using an in vitro infection model in MDCK cells. Our data show that the triple combination was highly synergistic against drug-resistant viruses, and the synergy of the triple combination was significantly greater than the synergy of any double combination tested (P<0.05), including the combination of two NAIs. Surprisingly, amantadine and oseltamivir contributed to the antiviral activity of the TCAD regimen against amantadine- and oseltamivir-resistant viruses, respectively, at concentrations where they had no activity as single agents, and at concentrations that were clinically achievable. Our data demonstrate that the TCAD regimen composed of amantadine, ribavirin, and oseltamivir is highly synergistic against resistant viruses, including 2009 H1N1. The TCAD regimen overcomes baseline drug resistance to both classes of approved influenza antivirals, and thus may represent a highly active antiviral therapy for seasonal and pandemic influenza.

Collaboration


Dive into the Donald F. Smee's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roland K. Robins

New Mexico Highlands University

View shared research outputs
Researchain Logo
Decentralizing Knowledge