Dale Lackeyram
University of Guelph
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dale Lackeyram.
Journal of Nutrition | 2010
Dale Lackeyram; Chengbo Yang; Tania Archbold; K. C. Swanson; Ming Z. Fan
Expression of the small intestinal alkaline phosphatase (IAP) is enterocyte differentiation dependent and plays essential roles in the detoxification of pathogenic bacterial lipopolysaccharide endotoxin, maintenance of luminal pH, organic phosphate digestion, and fat absorption. This study was conducted to examine the effect of early weaning on adaptive changes in IAP digestive capacity (V(cap)) and IAP gene expression compared with suckling counterparts in pigs at ages 10-22 d. Weaning decreased (P < 0.05) IAP enzyme affinity by 26% and IAP maximal enzyme activity by 22%, primarily in the jejunal region, with the jejunum expressing 84-86% of the whole gut mucosal IAP V(cap) [mol/(kg body weight.d)]. The majority (98%) of the jejunal mucosal IAP maximal activity was associated with the apical membrane and the remaining (2%) existed as the intracellular soluble IAP. Weaning reduced the abundance of the 60-kDa IAP protein associated with the proximal jejunal apical membrane by 64% (P < 0.05). Furthermore, weaning reduced (P < 0.05) the relative abundance of the proximal jejunal IAP mRNA by 58% and this was in association with decreases (P < 0.05) in the abundances of cytoplasmic (27%) and nuclear (29%) origins of IAP caudal-associated homeobox transcription factor 1. In conclusion, early weaning decreased small intestinal IAP V(cap), IAP catalytic affinity, and IAP gene expression, and this may in part contribute to the susceptibility of early-weaned piglets to increased occurrence of enteric diseases and growth-check.
American Journal of Physiology-gastrointestinal and Liver Physiology | 2011
Chengbo Yang; D. M. Albin; Zirong Wang; Barbara Stoll; Dale Lackeyram; K. C. Swanson; Yulong Yin; Kelly A. Tappenden; Yoshinori Mine; Rickey Y. Yada; Douglas G. Burrin; Ming Z. Fan
Gut apical Na(+)-glucose cotransporter 1 (SGLT1) activity is high at the birth and during suckling, thus contributing substantially to neonatal glucose homeostasis. We hypothesize that neonates possess high SGLT1 maximal activity by expressing apical SGLT1 protein along the intestinal crypt-villus axis via unique control mechanisms. Kinetics of SGLT1 activity in apical membrane vesicles, prepared from epithelial cells sequentially isolated along the jejunal crypt-villus axis from neonatal piglets by the distended intestinal sac method, were measured. High levels of maximal SGLT1 uptake activity were shown to exist along the jejunal crypt-villus axis in the piglets. Real-time RT-PCR analyses showed that SGLT1 mRNA abundance was lower (P < 0.05) by 30-35% in crypt cells than in villus cells. There were no significant differences in SGLT1 protein abundances on the jejunal apical membrane among upper villus, middle villus, and crypt cells, consistent with the immunohistochemical staining pattern. Higher abundances (P < 0.05) of total eukaryotic initiation factor 4E (eIF4E) protein and eIE4E-binding protein 1 γ-isoform in contrast to a lower (P < 0.05) abundance of phosphorylated (Pi) eukaryotic elongation factor 2 (eEF2) protein and the eEF2-Pi to total eEF2 abundance ratio suggest higher global protein translational efficiency in the crypt cells than in the upper villus cells. In conclusion, neonates have high intestinal apical SGLT1 uptake activity by abundantly expressing SGLT1 protein in the epithelia and on the apical membrane along the entire crypt-villus axis in association with enhanced protein translational control mechanisms in the crypt cells.
Journal of Animal Science | 2012
Ming Z. Fan; Tania Archbold; Dale Lackeyram; Qiang Liu; Yoshinori Mine; G. Paliyath
Increases in dietary intake of viscous and nonviscous soluble fiber are reported to improve bowel health. However, related biological mechanisms are not very clear. This study was conducted to examine if colonic inflammation would occur in a typical Western diet model and determine if consumption of soluble fiber components would attenuate potential detrimental effects by differentially affecting colonic abundances of anti-inflammatory cytokine IL-10 and 2 pro-inflammatory cytokines tumor necrosis factor-alpha (TNF-α) and IL-6 in pigs fed a high-fat basal diet supplemented, respectively, with 15% viscous soluble fiber guar gum (GG) and 15% nonviscous soluble fiber, that is, retrograded high-amylose corn (Zea mays) resistant starch (RS). A total of 24 Yorkshire growing barrows were assigned into a standard corn and soybean (Glycine max) meal (SBM)-based grower diet as a positive control (PC), an animal protein-based high-fat basal diet as the negative control (NC), and 2 NC basal diets supplemented with 15% GG and 15% RS, respectively, according to a completely randomized block design for 4 wk. Abundance of these cytokines in homogenized and extracted colonic tissue supernatant samples was measured by ELISA. Although colonic IL-10 abundance was lower (P < 0.05) in the corn and SBM-based PC group than that in the high-fat basal NC group, there were no differences (P > 0.05) in colonic abundances of TNF-α and IL-6 between NC and PC groups and among all of the treatment groups. Compared with the NC group, consumption of GG and RS at 15% increased (P < 0.05) colonic IL-10 abundance. Moreover, there was no difference (P > 0.05) in colonic IL-10 abundance between the 15% GG and the 15% RS groups. Thus, consumption of a typical high-fat Western diet did not induce colonic inflammation. Diets supplemented with 15% GG or 15% RS may protect the colon from developing inflammation by enhancing IL-10 abundance.
Journal of Animal Science | 2012
Dale Lackeyram; Yoshinori Mine; Tina M. Widowski; Tania Archbold; Ming Z. Fan
Chronic fatigue syndrome (CFS) is characterized by persistent and relapsing fatigue that involves oxidative stress in its pathogenesis. We tested the hypothesis that a decrease in key carbohydrate-digesting enzyme activity in the gut is one of the major biological mechanisms of developing CFS in liquid formula-fed neonatal pigs with in vivo infusion of H(2)O(2). Piglets at 7 to 10 d of age were fitted with an intraperitoneal catheter, allowed a 3-d post surgical recovery, and infused with either H(2)O(2) at 5 mmol/kg BW (PER; n = 8) or the same volume of saline (CON; n = 8) in six 20-ml doses daily for a period of 10 d. During this period, animal behavior was monitored, blood samples collected, and jejunal enzyme activity kinetic experiments for lactase, sucrase, maltase, and maltase-glucoamylase were conducted. Plasma concentration of reduced glutathione remained similar (P > 0.05) to the pre-infusion level over the study duration in the CON group whereas this was 65% lower (P < 0.05) than the pre-infusion level in the PER group. Piglets experiencing oxidative stress had an overall lower (P < 0.05) physical mobility and the maximal jejunal specific activities [μmol/(mg protein · min)] for lactase (PER, 6.54 ± 0.68 vs. CON, 12.65 ± 0.69) and maltase (PER, 57.39 ± 1.02 vs. CON, 75.60 ± 1.04), respectively. However, differences were not observed (P > 0.05) in the maximal specific activities [μmol/(mg protein · min)] of sucrase (PER, 10.50 ± 1.37 vs. CON, 12.40 ± 1.55) and maltase-glucoamylase (PER, 0.71 ± 0.08 vs. CON, 0.70 ± 0.07) between the 2 groups. In conclusion, infusion of a suitable dose of H(2)O(2) induced CFS in the neonatal pigs. Oxidative stress in vivo differentially affected the maximal activities of important small intestinal carbohydrate-digesting enzymes in neonatal pigs fed a dairy milk-based liquid formula.
Journal of Animal Science | 2012
Dale Lackeyram; Yoshinori Mine; Tania Archbold; Ming Z. Fan
Inflammatory bowel disease (IBD) is characterized by cramping, abdominal pain, bloating, constipation, and diarrhea. We tested the hypothesis that compromised activities of the major small intestinal apical hydrolases contribute to the symptoms of IBD. Changes in hydrolytic kinetics, target protein abundances, and mRNA expression of intestinal alkaline phosphatase (IAP), lactase, maltase, sucrase-isomaltase (SI), maltase-glucoamylase (MGA), and aminopeptidase N (APN) in piglets with colonic inflammation chemically induced by dextran sodium sulfate (DSS) were investigated. Yorkshire piglets at 5 d of age, with an average initial BW of about 3 kg, were fitted with intragastric catheters and were divided into control (CON; n = 6) and treatment groups (DSS; n = 5). Both groups were infused with an equal volume of either saline or 1.25 g of DSS · kg BW(-1) · d(-1) in saline, respectively, for 10 d. Enzyme kinetic experiments for IAP, lactase, maltase, SI, MGA, and APN were measured at 37°C with isolated proximal jejunal apical membrane. Target hydrolase protein abundances in the apical membrane were analyzed by Western blotting and their mRNA abundances in the jejunum were measured by quantitative real-time reverse transcription (RT-) PCR with β-actin as the housekeeping gene. Expressed as percentage of the CON, DSS treatment decreased (P < 0.05) the maximal specific activities of IAP (53%), lactase (78%), maltase (56%), SI (72%), MGA (29%), and APN (22%) as well as the target hydrolase protein abundances of IAP (39%), lactase (35%), SI (36%), and APN (54%), respectively. Decreases (P < 0.05) in the mRNA abundances (% of the CON) for lactase (25%), SI (52%), MGA (75%), and APN (39%) were observed in the DSS group. However, DSS treatment increased (P < 0.05) the jejunal IAP mRNA abundance by 3.5 fold. We conclude that decreases in the small intestinal apical activities of these examined hydrolases likely contribute to overgrowth of pathogenic bacterial populations in the distal small intestine and the colon, leading to the pathogenesis of IBD.
Journal of Nutrition | 2001
Ming Z. Fan; Tania Archbold; W. C. Sauer; Dale Lackeyram; Todd C. Rideout; Yingxin Gao; Cornelis F. M. de Lange; Roger R. Hacker
Journal of Peptide Science | 2007
Misako Aito-Inoue; Dale Lackeyram; Ming Z. Fan; Kenji Sato; Yoshinori Mine
American Journal of Physiology-gastrointestinal and Liver Physiology | 2004
Ming Z. Fan; J. C. Matthews; Nadege M. P. Etienne; Barbara J. Stoll; Dale Lackeyram; Douglas G. Burrin
The International Journal for the Scholarship of Teaching and Learning | 2009
Ashlee Cunsolo Willox; Dale Lackeyram
The FASEB Journal | 2007
Dale Lackeyram; Tania Archbold; Anna-Kate Shoveller; Yoshinori Mine; Ming Z. Fan