Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dali Han is active.

Publication


Featured researches published by Dali Han.


International Journal of Radiation Oncology Biology Physics | 2010

COMPARISON OF 18F-FLUOROTHYMIDINE AND 18F-FLUORODEOXYGLUCOSE PET/CT IN DELINEATING GROSS TUMOR VOLUME BY OPTIMAL THRESHOLD IN PATIENTS WITH SQUAMOUS CELL CARCINOMA OF THORACIC ESOPHAGUS

Dali Han; Jinming Yu; Yonghua Yu; Guifang Zhang; Xiaojun Zhong; Jie Lu; Y. Yin; Z. Fu; Dianbin Mu; Baijiang Zhang; Wei He; Zhijun Huo; Xijun Liu; L. Kong; S. Zhao; Xiangyu Sun

PURPOSE To determine the optimal method of using (18)F-fluorothymidine (FLT) positron emission tomography (PET)/computed tomography (CT) simulation to delineate the gross tumor volume (GTV) in esophageal squamous cell carcinoma verified by pathologic examination and compare the results with those using (18)F-fluorodeoxyglucose (FDG) PET/CT. METHODS AND MATERIALS A total of 22 patients were enrolled and underwent both FLT and FDG PET/CT. The GTVs with biologic information were delineated using seven different methods in FLT PET/CT and three different methods in FDG PET/CT. The results were compared with the pathologic gross tumor length, and the optimal threshold was obtained. Next, we compared the simulation plans using the optimal threshold of FLT and FDG PET/CT. The radiation dose was prescribed as 60 Gy in 30 fractions with a precise radiotherapy technique. RESULTS The mean +/- standard deviation pathologic gross tumor length was 4.94 +/- 2.21 cm. On FLT PET/CT, the length of the standardized uptake value 1.4 was 4.91 +/- 2.43 cm. On FDG PET/CT, the length of the standardized uptake value 2.5 was 5.10 +/- 2.18 cm, both of which seemed more approximate to the pathologic gross tumor length. The differences in the bilateral lung volume receiving > or =20 Gy, heart volume receiving > or =40 Gy, and the maximal dose received by spinal cord between FLT and FDG were not significant. However, the values for mean lung dose, bilateral lung volume receiving > or =5, > or =10, > or =30, > or =40, and > or =50 Gy, mean heart dose, and heart volume receiving > or =30 Gy using FLT PET/CT-based planning were significant lower than those using FDG PET/CT. CONCLUSION A standardized uptake value cutoff of 1.4 on FLT PET/CT and one of 2.5 on FDG PET/CT provided the closest estimation of GTV length. Finally, FLT PET/CT-based treatment planning provided potential benefits to the lungs and heart.


Asian Pacific Journal of Cancer Prevention | 2013

FDG PET-CT in Non-small Cell Lung Cancer: Relationship between Primary Tumor FDG Uptake and Extensional or Metastatic Potential

Shouhui Zhu; Yong Zhang; Yonghua Yu; Z. Fu; L. Kong; Dali Han; Lei Fu; J. Yu; Jia Li

OBJECTIVE To explore the relationships between primary tumor 18F-FDG uptake measured as the SUVmax and local extension, and nodal or distant organ metastasis in patients with NSCLC on pretreatment PET-CT. METHODS 93 patients with NSCLC who underwent 18F-FDG PET-CT scans before the treatment were included in the study. Primary tumor SUVmax was calculated; clinical stages, presence of local extension, nodal and distant organ metastases were recorded. The patients with SUVmax ≥ 2.5 were divided into low and high SUVmax groups by using the median SUVmax. The low SUVmax group consisted of 45 patients with SUVmax<10.5, the high SUVmax group consisted of 46 patients with SUVmax ≥ 10.5. Their data were compared statistically. RESULTS 91 cases with SUVmax≥2.5 were included for analysis. The mean SUVmax in patients without any metastasis was 7.42 ± 2.91 and this was significantly lower than that (12.18 ± 4.94) in patients with nodal and/or distant organ metastasis (P=0.000). In the low SUV group, 19 patients had local extension, 22 had nodal metastasis, and 9 had distant organ metastasis. In the high SUV group, 31 patients had local extension, 37 had nodal metastasis, and 18 had distant organ metastases. There was a significant difference in local extension (P =0.016), distant organ metastasis (P =0.046), and most significant difference in nodal metastasis rate (P =0.002) between the two groups. In addition, there was a moderate correlation between SUVmax and tumor size (r = 0.642, P<0.001), tumor stage (r = 0.546, P<0.001), node stage (r = 0.388, P<0.001), and overall stage (r = 0.445, P= 0.000). CONCLUSION Higher primary tumor SUVmax predicts higher extensional or metastatic potential in patients with NSCLC. Patients with higher SUVmax may need a close follow-up and more reasonable individual treatment because of their higher extensional and metastatic potential.


Radiation Oncology | 2015

Gradient-based delineation of the primary GTV on FLT PET in squamous cell cancer of the thoracic esophagus and impact on radiotherapy planning

Guifang Zhang; Dali Han; Changsheng Ma; Jie Lu; Tao Sun; Tonghai Liu; Jian Zhu; Jingwei Zhou; Yong Yin

BackgroundTo validate a gradient-based segmentation method for gross tumor volume(GTV) delineation on 8F-fluorothymidine (FLT)positron emission tomography (PET)/ computer tomography (CT) in esophageal squamous cell cancer through pathologic specimen, in comparison with standardized uptake values (SUV) threshold-based methods and CT. The corresponding impact of this GTV delineation method on treatment planning was evaluated.Methods and materialsTen patients with esophageal squamous cell cancer were enrolled. Before radical surgery, all patients underwent FLT-PET/CT. GTVs were delineated by using four methods. GTVGRAD, GTV1.4 and GTV30%max were segmented on FLT PET using a gradient-based method, a fixed threshold of 1.4 SUV and 30% of SUVmax, respectively. GTVCT was based on CT data alone. The maximum longitudinal tumor length of each segmented GTV was compared with the measured tumor length of the pathologic gross tumor length (LPath). GTVGRAD, GTV1.4 and GTV30%max were compared with GTVCT by overlap index. Two radiotherapy plannings (planGRAD) and (planCT) were designed for each patient based on GTVGRAD and GTVCT. The dose-volume parameters for target volume and normal tissues, CI and HI of planGRAD and planCT were compared.ResultsThe mean ± standard deviation of LPath was 6.47 ± 2.70 cm. The mean ± standard deviation of LGRAD,L1.4, L30%max and LCT were 6.22 ± 2.61, 6.23 ± 2.80, 5.95 ± 2.50,7.17 ± 2.28 cm, respectively. The Pearson correlation coefficients between LPath and each segmentation method were 0.989, 0.920, 0.920 and 0.862, respectively. The overlap indices of GTVGRAD, GTV1.4, GTV30%max when compared with GTVCT were 0.75 ± 0.12, 0.71 ± 0.12, 0.57 ± 0.10, respectively. The V5, V10, V20, V30 and mean dose of total-lung,V30 and mean dose of heart of planGRAD were significantly lower than planCT.ConclusionsThe gradient-based method provided the closest estimation of target length. The radiotherapy plannings based on the gradient-based segmentation method reduced the irradiated volume of lung, heart in comparison to CT.


Medical Dosimetry | 2011

Conventional craniospinal irradiation with patient supine and source-skin distance (SSD) 100 cm for spinal field.

Xijun Liu; J. Yu; Yonghua Yu; Y. Yin; Bing Wang; Yong Zhang; L. Kong; Dali Han; Zhijun Huo; Lei Fu

We describe a method of craniospinal irradiation (CSI) in the supine position and at a source-skin distance (SSD) of 100 cm for the spinal fields. The procedure is carried out with a 100-cm isocenter linear accelerator and conventional simulator, and the treatment is delivered with 2 opposed lateral cranial fields at source-axis distance (SAD) of 100 cm and 1 or 2 direct posterior spinal fields at SSD, 100 cm. The half beam-blocked cranial fields with a collimator rotation is used to match the superior border of the spinal field at the level of C2 vertebral body. The length of the spinal field is fixed, and is the same if 2 spinal fields are used. The position of the isocenter of the spine field is defined by longitudinally moving the couch a distance from the isocenter of the cranial fields and adjusting the SSD = 100 cm to the surface of the couch with the gantry rotated to the angle of 180° (posteroanterior position), and the distance can be calculated easily according to a few parameters. It only needs a simple calculation without couch rotation, extended SSD, or markers. The inferior and superior borders of the spinal field do not require visualization under fluoroscopy when it is beyond the visual field of the simulator. The entire simulation takes no more than 20 minutes. Supine craniospinal treatment using this technique may substitute the traditional prone position as a potentially beneficial alternative to CSI.


Journal of Cancer | 2016

What Is the Appropriate Clinical Target Volume for Esophageal Squamous Cell Carcinoma? Debate and Consensus Based on Pathological and Clinical Outcomes

Dali Han; Yinping Yuan; Xuqing Song; Yonghua Yu; Jinming Yu

Accurate delineation of clinical target volume (CTV) is critical in the effective management of squamous cell carcinoma (SCC) of esophagus using radiation therapy. Accurate delineation may improve the probability of local control and reduce the risk of complications. However, there are no consistent standards on the proper size of the margins added to the gross tumor volume (GTV). Different institutions and radiation oncologists have discordant opinions. In this paper, we review pathological and clinical outcomes to determine the most appropriate CTV for squamous cell carcinomas (SCC) of esophagus. The CTV for esophageal carcinoma should ensure that all subclinical lesions are encompassed regardless of the physical distance. The most precise method for delineating a reasonable CTV is to combine advanced imaging techniques, such as PET/CT and EUS, which allows the detection and prediction of subclinical lesions based on tumor characteristics such as the pathological type, differentiation, T disease, length and lymph node status.


Biomedicine & Pharmacotherapy | 2009

Comparing the Diagnostic Value of FLT and FDG PET/CT in Assessment of Regional Lymph Nodes in Thoracic Esophageal Squamous Cell Carcinoma

J. Yu; Dali Han; Xiaojun Zhong; Dianbin Mu; Zheng Fu; Baijiang Zhang; Limin Zhang; Weidi Zhang; S. Zhao


International Journal of Radiation Oncology Biology Physics | 2018

Using 18F-FDG PET/CT to Estimate the Length of Gross Tumor and Involvement of Lymph Nodes in Esophagogastric Junction Carcinoma

C.L. Ma; Y.H. Yu; X.D. Li; Zhang Y; J. Li; X.R. Zhao; C. Gao; Dali Han; Z. Fu; W.D. Zhang; J.J. Sun


Journal of Clinical Oncology | 2016

The optimal threshold of 18F-FLT PET and 18F-FDG PET to estimate the length of gross tumor volume in patients with squamous cell carcinoma of the thoracic esophagus verified by pathological examination

J. Yu; Dali Han; Xiaojun Zhong; Dianbin Mu; Zheng Fu; Baijiang Zhan g; Limin Zhang; Weidi Zhang


The Journal of Nuclear Medicine | 2015

Proliferating Metabolic Tumor Volume on FLT PET/CT can predict the prognosis of patients with resectable esophageal squamous cell carcinoma

Dali Han; Zheng Fu; Jinming Yu; Wenfeng Yang; Yinping Yuan; Lili Wang


International Journal of Radiation Oncology Biology Physics | 2014

Risk Factors of Lymph Node Micrometastasis in Negative Node of Esophageal Squamous Cell Carcinoma Detected by Conventional Pathological Technique, and Its Relationship With Primary Tumor FDG PET/CT Uptake

Dali Han; Y. Yuan; Z. Fu; Dianbin Mu; J. Yu

Collaboration


Dive into the Dali Han's collaboration.

Top Co-Authors

Avatar

J. Yu

Shandong University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaojun Zhong

Tianjin Medical University

View shared research outputs
Top Co-Authors

Avatar

L. Ma

Shandong University

View shared research outputs
Top Co-Authors

Avatar

Guojie Zhang

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

J. Li

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge