Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dalila L. Zanette is active.

Publication


Featured researches published by Dalila L. Zanette.


Stem Cells | 2003

The Profile of Gene Expression of Human Marrow Mesenchymal Stem Cells

Wilson A. Silva; Dimas Tadeu Covas; Rodrigo A. Panepucci; Rodrigo Proto-Siqueira; Jorge L.C. Siufi; Dalila L. Zanette; Anemari Ramos Dinarte dos Santos; Marco A. Zago

Mesenchymal stem cells (MSCs) are multipotent precursors present in adult bone marrow, that differentiate into osteoblasts, adipocytes and myoblasts, and play important roles in hematopoiesis. We examined gene expression of these cells by serial analysis of gene expression, and found that collagen I, secreted protein acidic and rich in cysteine (osteonectin), transforming growth factor beta‐ (TGF‐β) induced, cofilin, galectin‐1, laminin‐receptor 1, cyclophilin A, and matrix metalloproteinase‐2 are among the most abundantly expressed genes. Comparison with a library of CD34+ cells revealed that MSCs had a larger number of expressed genes in the categories of cell adhesion molecule, extracellular and development. The two types of cells share abundant transcripts of many genes, some of which are highly expressed in myeloid progenitors (thymosin‐β4 and β10, fos and jun). Interleukin‐11 (IL‐11), IL‐15, IL‐27 and IL‐10R, IL‐13R and IL‐17R were the most expressed genes among the cytokines and their receptors in MSCs, and various interactions can be predicted with the CD34+ cells. MSCs express several transcripts for various growth factors and genes suggested to be enriched in stem cells. This study reports the profile of gene expression in MSCs and identifies the important contribution of extracellular protein products, adhesion molecules, cell motility, TGF‐β signaling, growth factor receptors, DNA repair, protein folding, and ubiquination as part of their transcriptome.


Leukemia | 2009

Association of drug metabolism gene polymorphisms with toxicities, graft-versus-host disease and survival after HLA-identical sibling hematopoietic stem cell transplantation for patients with leukemia.

Vanderson Rocha; Raphael Porcher; J F Fernandes; A Filion; Henrique Bittencourt; Wilson A. Silva; G Vilela; Dalila L. Zanette; C Ferry; J Larghero; Agnès Devergie; Patricia Ribaud; Y Skvortsova; R Tamouza; Eliane Gluckman; Gérard Socié; Marco A. Zago

Individual differences in drug efficacy or toxicity can be influenced by genetic factors. We investigated whether polymorphisms of pharmacogenes that interfere with metabolism of drugs used in conditioning regimen and graft-versus-host disease (GvHD) prophylaxis could be associated with outcomes after HLA-identical hematopoietic stem cell transplantation (HSCT). Pharmacogenes and their polymorphisms were studied in 107 donors and patients with leukemia receiving HSCT. Candidate genes were: P450 cytochrome family (CYP2B6), glutathione-S-transferase family (GST), multidrug-resistance gene, methylenetetrahydrofolate reductase (MTHFR) and vitamin D receptor (VDR). The end points studied were oral mucositis (OM), hemorrhagic cystitis (HC), toxicity and venoocclusive disease of the liver (VOD), GvHD, transplantation-related mortality (TRM) and survival. Multivariate analyses, using death as a competing event, were performed adjusting for clinical factors. Among other clinical and genetic factors, polymorphisms of CYP2B6 genes that interfere with cyclophosphamide metabolism were associated with OM (recipient CYP2B6*4; P=0.0067), HC (recipient CYP2B6*2; P=0.03) and VOD (donor CYP2B6*6; P=0.03). Recipient MTHFR polymorphisms (C677T) were associated with acute GvHD (P=0.03), and recipient VDR TaqI with TRM and overall survival (P=0.006 and P=0.04, respectively).Genetic factors that interfere with drug metabolisms are associated with treatment-related toxicities, GvHD and survival after HLA-identical HSCT in patients with leukemia and should be investigated prospectively.


PLOS ONE | 2010

Ultra-Deep Sequencing Reveals the microRNA Expression Pattern of the Human Stomach

Ândrea Ribeiro-dos-Santos; André Salim Khayat; Artur Silva; Dayse O. Alencar; Jessé Lobato; Larissa Luz; Daniel G. Pinheiro; Leonardo Varuzza; Monica Assumpção; Paulo Pimentel Assumpção; Sidney Santos; Dalila L. Zanette; Wilson A. Silva; Rommel Rodríguez Burbano; Sylvain Darnet

Background While microRNAs (miRNAs) play important roles in tissue differentiation and in maintaining basal physiology, little is known about the miRNA expression levels in stomach tissue. Alterations in the miRNA profile can lead to cell deregulation, which can induce neoplasia. Methodology/Principal Findings A small RNA library of stomach tissue was sequenced using high-throughput SOLiD sequencing technology. We obtained 261,274 quality reads with perfect matches to the human miRnome, and 42% of known miRNAs were identified. Digital Gene Expression profiling (DGE) was performed based on read abundance and showed that fifteen miRNAs were highly expressed in gastric tissue. Subsequently, the expression of these miRNAs was validated in 10 healthy individuals by RT-PCR showed a significant correlation of 83.97% (P<0.05). Six miRNAs showed a low variable pattern of expression (miR-29b, miR-29c, miR-19b, miR-31, miR-148a, miR-451) and could be considered part of the expression pattern of the healthy gastric tissue. Conclusions/Significance This study aimed to validate normal miRNA profiles of human gastric tissue to establish a reference profile for healthy individuals. Determining the regulatory processes acting in the stomach will be important in the fight against gastric cancer, which is the second-leading cause of cancer mortality worldwide.


International Journal of Neuroscience | 2012

miR-15a and 16-1 are downregulated in CD4+ T cells of multiple sclerosis relapsing patients.

Julio C. C. Lorenzi; Doralina G. Brum; Dalila L. Zanette; Alessandra de Paula Alves Souza; Fernanda Gonçalves Barbuzano; Antonio Carlos dos Santos; Amilton Antunes Barreira; Wilson A. Silva

ABSTRACT The pathology of relapsing–remitting multiple sclerosis (RR-MS) is largely attributed to activated autoreactive effector T lymphocytes. The influence of microRNAs on the immune response has been shown to occur in different pathways of lymphocyte differentiation and function. Here, the expression of the miRNAs miR-15a/16-1 in PBMC, CD4+, and CD8+ from RR-MS patients has been investigated. BCL2, a known miR-15a/16-1 target, has also been analyzed. The results have shown that miR-15a/16-1 is downregulated in CD4+ T cells, whereas BCL2 is highly expressed in RR-MS patients only. Our data suggest that miR-15a/16-1 can also modulate the BCL2 gene expression in CD4+ T cells from RR-MS patients, thereby affecting apoptosis processes.


Bone Marrow Transplantation | 2015

Autologous hematopoietic SCT normalizes miR-16, -155 and -142-3p expression in multiple sclerosis patients

Lucas C. M. Arruda; Julio C. C. Lorenzi; A P A Sousa; Dalila L. Zanette; P.V.B. Palma; Rodrigo A. Panepucci; D S Brum; Amilton Antunes Barreira; Dimas Tadeu Covas; Belinda Pinto Simões; Wilson A. Silva; M C Oliveira; Kelen C. R. Malmegrim

Autologous hematopoietic SCT (AHSCT) has been investigated in the past as a therapeutic alternative for multiple sclerosis (MS). Despite advances in clinical management, knowledge about mechanisms involved with clinical remission post transplantation is still limited. Abnormal microRNA and gene expression patterns were described in MS and have been suggested as disease biomarkers and potential therapeutic targets. Here we assessed T- and B-cell reconstitution, microRNAs and immunoregulatory gene expression after AHSCT. Early immune reconstitution was mainly driven by peripheral homeostatic proliferation. AHSCT increased CD4+CD25hiFoxP3+ regulatory T-cell counts and expression of CTLA-4 and GITR (glucocorticoid-induced TNFR) on CD4+CD25hi T cells. We found transient increase in exhausted PD-1+ T cells and of suppressive CD8+CD28−CD57+ T cells. At baseline, CD4+ and CD8+ T cells from MS patients presented upregulated miR-16, miR-155 and miR-142-3p and downregulated FOXP3, FOXO1, PDCD1 and IRF2BP2. After transplantation, the expression of FOXP3, FOXO1, PDCD1 and IRF2BP2 increased, reaching control levels at 2 years. Expression of miR-16, miR-155 and miR-142-3p decreased towards normal levels at 6 months post therapy, remaining downregulated until the end of follow-up. These data strongly suggest that AHSCT normalizes microRNA and gene expression, thereby improving the immunoregulatory network. These mechanisms may be important for disease control in the early periods after AHSCT.


Experimental hematology & oncology | 2013

Increased expression of miR-221 is associated with shorter overall survival in T-cell acute lymphoid leukemia.

Hamilton L. Gimenes-Teixeira; Antonio R. Lucena-Araujo; Guilherme A. dos Santos; Dalila L. Zanette; Priscila Santos Scheucher; Luciana Correa Oliveira de Oliveira; Leandro F. Dalmazzo; Wilson A. Silva-Junior; Roberto P. Falcao; Eduardo M. Rego

BackgroundCD56 expression has been associated with a poor prognosis in lymphoid neoplasms, including T-cell acute lymphoblastic leukemia (T-ALL). MicroRNAs (miRNAs) play an important role in lymphoid differentiation, and aberrant miRNA expression has been associated with treatment outcome in lymphoid malignancies. Here, we evaluated miRNA expression profiles in normal thymocytes, mature T-cells, and T-ALL samples with and without CD56 expression and correlated microRNA expression with treatment outcome.MethodsThe gene expression profile of 164 miRNAs were compared for T-ALL/CD56+ (n=12) and T-ALL/CD56- (n=36) patients by Real-Time Quantitative PCR. Based on this analysis, we decided to evaluate miR-221 and miR-374 expression in individual leukemic and normal samples.ResultsmiR-221 and miR-374 were expressed at significantly higher levels in T-ALL/CD56+ than in T-ALL/CD56- cells and in leukemic blasts compared with normal thymocytes and peripheral blood (PB) T-cells. Age at diagnosis (15 or less vs grater than 15 years; HR: 2.19, 95% CI: 0.98-4.85; P=0.05), miR-221 expression level (median value as cut off in leukemic samples; HR: 3.17, 95% CI: 1.45-6.92; P=0.004), and the expression of CD56 (CD56-vs CD56+; HR: 2.99, 95% CI: 1.37-6.51; P=0.006) were predictive factors for shorter overall survival; whereas, only CD56 expression (HR: 2.73, 95% CI: 1.03-7.18; P=0.041) was associated with a shorter disease-free survival rate.ConclusionsmiR-221 is highly expressed in T-ALL and its expression level may be associated with a poorer prognosis.


PLOS ONE | 2012

Antiproliferative Effects of Fluoxetine on Colon Cancer Cells and in a Colonic Carcinogen Mouse Model

Vinicius Kannen; Henning Hintzsche; Dalila L. Zanette; Wilson A. Silva; Sérgio Britto Garcia; Ana Maria Waaga-Gasser; Helga Stopper

The antidepressant fluoxetine has been under discussion because of its potential influence on cancer risk. It was found to inhibit the development of carcinogen-induced preneoplastic lesions in colon tissue, but the mechanisms of action are not well understood. Therefore, we investigated anti-proliferative effects, and used HT29 colon tumor cells in vitro, as well as C57BL/6 mice exposed to intra-rectal treatment with the carcinogen N-methyl-N’-nitro-N-nitrosoguanidine (MNNG) as models. Fluoxetine increased the percentage of HT29 cells in the G0/G1 phase of cell-cycle, and the expression of p27 protein. This was not related to an induction of apoptosis, reactive oxygen species or DNA damage. In vivo, fluoxetine reduced the development of MNNG-induced dysplasia and vascularization-related dysplasia in colon tissue, which was analyzed by histopathological techniques. An anti-proliferative potential of fluoxetine was observed in epithelial and stromal areas. It was accompanied by a reduction of VEGF expression and of the number of cells with angiogenic potential, such as CD133, CD34, and CD31-positive cell clusters. Taken together, our findings suggest that fluoxetine treatment targets steps of early colon carcinogenesis. This confirms its protective potential, explaining at least partially the lower colon cancer risk under antidepressant therapy.


Toxicology Letters | 2011

Fluoxetine induces preventive and complex effects against colon cancer development in epithelial and stromal areas in rats

Vinicius Kannen; Tassiana Marini; Aline Turatti; Milene C. Carvalho; Marcus Lira Brandão; Valquíria Aparecida Polisel Jabor; Pierina Sueli Bonato; Frederico Rogério Ferreira; Dalila L. Zanette; Wilson A. Silva; Sérgio Britto Garcia

Fluoxetine (FLX) is a drug commonly used as antidepressant. However, its effects on tumorigenesis remain controversial. Aiming to evaluate the effects of FLX treatment on early malignant changes, we analyzed serotonin (5-HT) metabolism and recognition, aberrant crypt foci (ACF), proliferative process, microvessels, vascular endothelial growth factor (VEGF), and cyclooxygenase-2 (COX-2) expression in colon tissue. Male Wistar rats received a daily FLX-gavage (30mgkg(-1)) and, a single dose of 1,2 dimethylhydrazine (DMH; i.p., 125mgkg(-1)). After 6 weeks of FLX-treatment, our results revealed that FLX and nor-fluoxetine (N-FLX) are present in colon tissue, which was related to significant increase in serotonin (5-HT) levels (P<0.05) possibly through a blockade in SERT mRNA (serotonin reuptake transporter; P<0.05) resulting in lower 5-hydroxyindoleacetic acid (5-HIAA) levels (P<0.01) and, 5-HT2C receptor mRNA expressions. FLX-treatment decreased dysplastic ACF development (P<0.01) and proliferative process (P<0.001) in epithelia. We observed a significant decrease in the development of malignant microvessels (P<0.05), VEGF (P<0.001), and COX-2 expression (P<0.01). These findings suggest that FLX may have oncostatic effects on carcinogenic colon tissue, probably due to its modulatory activity on 5-HT metabolism and/or its ability to reduce colonic malignant events.


BMC Medical Genetics | 2014

COL1A1 and miR-29b show lower expression levels during osteoblast differentiation of bone marrow stromal cells from Osteogenesis Imperfecta patients

Carla M. Kaneto; Patrícia Sp Lima; Dalila L. Zanette; Karen de Lima Prata; João Neto; Francisco Ja de Paula; Wilson A. Silva

BackgroundThe majority of Osteogenesis Imperfecta (OI) cases are caused by mutations in one of the two genes, COL1A1 and COL1A2 encoding for the two chains that trimerize to form the procollagen 1 molecule. However, alterations in gene expression and microRNAs (miRNAs) are responsible for the regulation of cell fate determination and may be evolved in OI phenotype.MethodsIn this work, we analyzed the coding region and intron/exon boundaries of COL1A1 and COL1A2 genes by sequence analysis using an ABI PRISM 3130 automated sequencer and Big Dye Terminator Sequencing protocol. COL1A1 and miR-29b expression were also evaluated during the osteoblastic differentiation of mesenchymal stem cell (MSC) by qRT-PCR using an ABI7500 Sequence Detection System.ResultsWe have identified eight novel mutations, where of four may be responsible for OI phenotype. COL1A1 and miR-29b showed lower expression values in OI type I and type III samples. Interestingly, one type III OI sample from a patient with Bruck Syndrome showed COL1A1 and miR-29b expressions alike those from normal samples.ConclusionsResults suggest that the miR-29b mechanism directed to regulate collagen protein accumulation during mineralization is dependent upon the amount of COL1A1 mRNA. Taken together, results indicate that the lower levels observed in OI samples were not sufficient for the induction of miR-29b.


Biochemical and Biophysical Research Communications | 2011

The melatonin action on stromal stem cells within pericryptal area in colon cancer model under constant light

Vinicius Kannen; Tassiana Marini; Dalila L. Zanette; Fernando Tadeu Trevisan Frajacomo; Gyl Eanes Barros Silva; Wilson A. Silva; Sérgio Britto Garcia

Constant light (LL) is associated with high incidence of colon cancer. MLT supplementation was related to the significant control of preneoplastic patterns. We sought to analyze preneoplastic patterns in colon tissue from animals exposed to LL environment (14 days; 300 lx), MLT-supplementation (10mg/kg/day) and DMH-treatment (1,2 dimethylhydrazine; 125 mg/kg). Rodents were sacrificed and MLT serum levels were measured by radioimmunoassay. Our results indicated that LL induced ACF development (p < 0.001) with a great potential to increase the number of CD133(+) and CD68(+) cells (p < 0.05 and p < 0.001). LL also increased the proliferative process (PCNA-Li; p < 0.001) as well as decreased caspase-3 protein (p < 0.001), related to higher COX-2 protein expression (p < 0.001) within pericryptal colonic stroma (PCCS). However, MLT-supplementation controlled the development of dysplastic ACF (p < 0.001) diminishing preneoplastic patterns into PCCS as CD133 and CD68 (p < 0.05 and p < 0.001). These events were relative to decreased PCNA-Li index and higher expression of caspase-3 protein. Thus, MLT showed a great potential to control the preneoplastic patterns induced by LL.

Collaboration


Dive into the Dalila L. Zanette's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marco A. Zago

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge