Julio C. C. Lorenzi
Rockefeller University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Julio C. C. Lorenzi.
Journal of Experimental Medicine | 2014
Masashi Shingai; Olivia K. Donau; Ronald J. Plishka; Alicia Buckler-White; John R. Mascola; Gary J. Nabel; Martha Nason; David C. Montefiori; Brian Moldt; Pascal Poignard; Ron Diskin; Pamela J. Bjorkman; Michael A. Eckhaus; Florian Klein; Hugo Mouquet; Julio C. C. Lorenzi; Anna Gazumyan; Dennis R. Burton; Michel C. Nussenzweig; Malcolm A. Martin; Yoshiaki Nishimura
Five potent and broadly anti-HIV neutralizing monoclonal antibodies are able to block infection by two different SHIVs in monkeys. The authors show that antibodies targeting the outer glycan coat were the most effective and determined that titers of roughly 1:100 protected half the animals.
Nature | 2016
Johannes F. Scheid; Joshua A. Horwitz; Yotam Bar-On; Edward F. Kreider; Ching Lan Lu; Julio C. C. Lorenzi; Anna Feldmann; Malte Braunschweig; Lilian Nogueira; Thiago Y. Oliveira; Irina Shimeliovich; Roshni Patel; Leah A. Burke; Yehuda Z. Cohen; Sonya Hadrigan; Allison Settler; Maggi Witmer-Pack; Anthony P. West; Boris Juelg; Tibor Keler; Thomas Hawthorne; Barry Zingman; Roy M. Gulick; Nico Pfeifer; Gerald H. Learn; Michael S. Seaman; Pamela J. Bjorkman; Florian Klein; Sarah J. Schlesinger; Bruce D. Walker
Interruption of combination antiretroviral therapy (ART) in HIV-1-infected individuals leads to rapid viral rebound. Here we report the results of a phase IIa open label clinical trial evaluating 3BNC117, a broad and potent neutralizing antibody (bNAb) against the CD4 binding site of HIV-1 Env, in the setting of analytical treatment interruption (ATI) in 13 HIV-1-infected individuals. Participants with 3BNC117-sensitive virus outgrowth cultures were enrolled. Two or four 30 mg/kg infusions of 3BNC117, separated by 3 or 2 weeks, respectively, were generally well tolerated. The infusions were associated with a delay in viral rebound for 5-9 weeks after 2 infusions, and up to 19 weeks after 4 infusions, or an average of 6.7 and 9.9 weeks respectively, compared with 2.6 weeks for historical controls (p=<1e-5). Rebound viruses arose predominantly from a single provirus. In most individuals, emerging viruses showed increased resistance indicating escape. However, 30% of participants remained suppressed until antibody concentrations waned below 20 μg/ml, and the viruses emerging in all but one of these individuals showed no apparent resistance to 3BCN117, suggesting failure to escape over a period of 9-19 weeks. We conclude that administration of 3BNC117 exerts strong selective pressure on HIV-1 emerging from latent reservoirs during ATI in humans.
BMC Biotechnology | 2010
Julio C. C. Lorenzi; Ana Paula Favaro Trombone; Carolina D. Rocha; Luciana P. Almeida; Ricardo L. Lousada; Thiago Malardo; Isabela C. Fontoura; Renata Ariza Marques Rossetti; Ana Flávia Gembre; Aristóbolo M. Silva; Célio Lopes Silva; Arlete A. M. Coelho-Castelo
BackgroundmRNAs are highly versatile, non-toxic molecules that are easy to produce and store, which can allow transient protein expression in all cell types. The safety aspects of mRNA-based treatments in gene therapy make this molecule one of the most promising active components of therapeutic or prophylactic methods. The use of mRNA as strategy for the stimulation of the immune system has been used mainly in current strategies for the cancer treatment but until now no one tested this molecule as vaccine for infectious disease.ResultsWe produce messenger RNA of Hsp65 protein from Mycobacterium leprae and show that vaccination of mice with a single dose of 10 μg of naked mRNA-Hsp65 through intranasal route was able to induce protection against subsequent challenge with virulent strain of Mycobacterium tuberculosis. Moreover it was shown that this immunization was associated with specific production of IL-10 and TNF-alpha in spleen. In order to determine if antigen presenting cells (APCs) present in the lung are capable of capture the mRNA, labeled mRNA-Hsp65 was administered by intranasal route and lung APCs were analyzed by flow cytometry. These experiments showed that after 30 minutes until 8 hours the populations of CD11c+, CD11b+ and CD19+ cells were able to capture the mRNA. We also demonstrated in vitro that mRNA-Hsp65 leads nitric oxide (NO) production through Toll-like receptor 7 (TLR7).ConclusionsTaken together, our results showed a novel and efficient strategy to control experimental tuberculosis, besides opening novel perspectives for the use of mRNA in vaccines against infectious diseases and clarifying the mechanisms involved in the disease protection we noticed as well.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Julio C. C. Lorenzi; Yehuda Z. Cohen; Lillian B. Cohn; Edward F. Kreider; John P. Barton; Gerald H. Learn; Thiago Y. Oliveira; Christy L. Lavine; Joshua A. Horwitz; Allison Settler; Mila Jankovic; Michael S. Seaman; Arup K. Chakraborty; Beatrice H. Hahn; Marina Caskey; Michel C. Nussenzweig
Significance A reservoir of latently infected cells poses the greatest challenge to HIV-1 eradication. Efforts to develop strategies to eliminate the reservoir have been hampered, in part, by the lack of a precise understanding of the cellular and molecular nature of this reservoir. We describe a new method to analyze the replication-competent latent reservoir quantitatively and qualitatively. We find that over 50% of the replication-competent viruses in the reservoir form part of groups with identical env sequences. However, a negative correlation exists between integrated proviral clones and replication-competent viruses, such that the larger the proviral clone, the lower is its probability of representing a replication-competent virus. HIV-1–infected individuals harbor a latent reservoir of infected CD4+ T cells that is not eradicated by antiretroviral therapy (ART). This reservoir presents the greatest barrier to an HIV-1 cure and has remained difficult to characterize, in part, because the vast majority of integrated sequences are defective and incapable of reactivation. To characterize the replication-competent reservoir, we have combined two techniques, quantitative viral outgrowth and qualitative sequence analysis of clonal outgrowth viruses. Leukapheresis samples from four fully ART-suppressed, chronically infected individuals were assayed at two time points separated by a 4- to 6-mo interval. Overall, 54% of the viruses emerging from the latent reservoir showed gp160 env sequences that were identical to at least one other virus. Moreover, 43% of the env sequences from viruses emerging from the reservoir were part of identical groups at the two time points. Groups of identical expanded sequences made up 54% of proviral DNA, and, as might be expected, the sequences of replication-competent viruses in the active reservoir showed limited overlap with integrated proviral DNA, most of which is known to represent defective viruses. Finally, there was an inverse correlation between proviral DNA clone size and the probability of reactivation, suggesting that replication-competent viruses are less likely to be found among highly expanded provirus-containing cell clones.
International Journal of Neuroscience | 2012
Julio C. C. Lorenzi; Doralina G. Brum; Dalila L. Zanette; Alessandra de Paula Alves Souza; Fernanda Gonçalves Barbuzano; Antonio Carlos dos Santos; Amilton Antunes Barreira; Wilson A. Silva
ABSTRACT The pathology of relapsing–remitting multiple sclerosis (RR-MS) is largely attributed to activated autoreactive effector T lymphocytes. The influence of microRNAs on the immune response has been shown to occur in different pathways of lymphocyte differentiation and function. Here, the expression of the miRNAs miR-15a/16-1 in PBMC, CD4+, and CD8+ from RR-MS patients has been investigated. BCL2, a known miR-15a/16-1 target, has also been analyzed. The results have shown that miR-15a/16-1 is downregulated in CD4+ T cells, whereas BCL2 is highly expressed in RR-MS patients only. Our data suggest that miR-15a/16-1 can also modulate the BCL2 gene expression in CD4+ T cells from RR-MS patients, thereby affecting apoptosis processes.
Bone Marrow Transplantation | 2015
Lucas C. M. Arruda; Julio C. C. Lorenzi; A P A Sousa; Dalila L. Zanette; P.V.B. Palma; Rodrigo A. Panepucci; D S Brum; Amilton Antunes Barreira; Dimas Tadeu Covas; Belinda Pinto Simões; Wilson A. Silva; M C Oliveira; Kelen C. R. Malmegrim
Autologous hematopoietic SCT (AHSCT) has been investigated in the past as a therapeutic alternative for multiple sclerosis (MS). Despite advances in clinical management, knowledge about mechanisms involved with clinical remission post transplantation is still limited. Abnormal microRNA and gene expression patterns were described in MS and have been suggested as disease biomarkers and potential therapeutic targets. Here we assessed T- and B-cell reconstitution, microRNAs and immunoregulatory gene expression after AHSCT. Early immune reconstitution was mainly driven by peripheral homeostatic proliferation. AHSCT increased CD4+CD25hiFoxP3+ regulatory T-cell counts and expression of CTLA-4 and GITR (glucocorticoid-induced TNFR) on CD4+CD25hi T cells. We found transient increase in exhausted PD-1+ T cells and of suppressive CD8+CD28−CD57+ T cells. At baseline, CD4+ and CD8+ T cells from MS patients presented upregulated miR-16, miR-155 and miR-142-3p and downregulated FOXP3, FOXO1, PDCD1 and IRF2BP2. After transplantation, the expression of FOXP3, FOXO1, PDCD1 and IRF2BP2 increased, reaching control levels at 2 years. Expression of miR-16, miR-155 and miR-142-3p decreased towards normal levels at 6 months post therapy, remaining downregulated until the end of follow-up. These data strongly suggest that AHSCT normalizes microRNA and gene expression, thereby improving the immunoregulatory network. These mechanisms may be important for disease control in the early periods after AHSCT.
Tumor Biology | 2015
Luiza Ferreira de Araújo; Aline Simoneti Fonseca; Bruna Rodrigues Muys; Jessica Rodrigues Plaça; Rafaela de Barros e Lima Bueno; Julio C. C. Lorenzi; Anemari Ramos Dinarte dos Santos; Greice A. Molfetta; Dalila L. Zanette; Jorge Estefano Santana de Souza; Valeria Valente; Wilson A. Silva
Mitochondrial dysfunction is regarded as a hallmark of cancer progression. In the current study, we evaluated mitochondrial genome instability and copy number in colorectal cancer using Next Generation Sequencing approach and qPCR, respectively. The results revealed higher levels of heteroplasmy and depletion of the relative mtDNA copy number in colorectal adenocarcinoma. Adenocarcinoma samples also presented an increased number of mutations in nuclear genes encoding proteins which functions are related with mitochondria fusion, fission and localization. Moreover, we found a set of mitochondrial and nuclear genes, which cooperate in the same mitochondrial function simultaneously mutated in adenocarcinoma. In summary, these results support an important role for mitochondrial function and genomic instability in colorectal tumorigenesis.
PLOS ONE | 2016
Bruna Rodrigues Muys; Julio C. C. Lorenzi; Dalila L. Zanette; Rafaela de Barros Lima e Bueno; Luiza Ferreira de Araújo; Anemari Ramos Dinarte-Santos; Cleidson Pádua Alves; Anelisa Ramão; Greice A. Molfetta; Daniel Onofre Vidal; Wilson A. Silva
LINC00629 and MIR503HG are long intergenic non-coding RNAs (lincRNAs) mapped on chromosome X (Xq26), a region enriched for genes associated with human reproduction. Genes highly expressed in normal reproductive tissues and cancers (CT genes) are well known as potential tumor biomarkers. This study aimed to characterize the structure, expression, function and regulation mechanism of MIR503HG and LINC00629 lincRNAs. According to our data, MIR503HG expression was almost exclusive to placenta and LINC00629 was highly expressed in placenta and other reproductive tissues. Further analysis, using a cancer cell lines panel, showed that MIR503HG and LINC00629 were expressed in 50% and 100% of the cancer cell lines, respectively. MIR503HG was expressed predominantly in the nucleus of JEG-3 choriocarcinoma cells. We observed a positively correlated expression between MIR503HG and LINC00629, and between the lincRNAs and neighboring miRNAs. Also, both LINC00629 and MIR503GH could be negatively regulated by DNA methylation in an indirect way. Additionally, we identified new transcripts for MIR503HG and LINC00629 that are relatively conserved when compared to other primates. Furthermore, we found that overexpression of MIR503HG2 and the three-exon LINC00629 new isoforms decreased invasion and migration potential of JEG-3 tumor cell line. In conclusion, our results suggest that lincRNAs MIR503HG and LINC00629 impaired migration and invasion capacities in a choriocarcinoma in vitro model, indicating a potential role in human reproduction and tumorigenesis. Moreover, the MIR503HG expression pattern found here could indicate a putative new tumor biomarker.
PLOS ONE | 2015
Dalila L. Zanette; Julio C. C. Lorenzi; Rodrigo A. Panepucci; Patricia Vianna Bonini Palma; Daiane Fernanda dos Santos; Karen de Lima Prata; Wilson A. Silva
Statins are widely used hypocholesterolemic drugs that block the mevalonate pathway, responsible for the biosysnthesis of cholesterol. However, statins also have pleiotropic effects that interfere with several signaling pathways. Mesenchymal stromal cells (MSC) are a heterogeneous mixture of cells that can be isolated from a variety of tissues and are identified by the expression of a panel of surface markers and by their ability to differentiate in vitro into osteocytes, adipocytes and chondrocytes. MSC were isolated from amniotic membranes and bone marrows and characterized based on ISCT (International Society for Cell Therapy) minimal criteria. Simvastatin-treated cells and controls were directly assayed by CFSE (Carboxyfluorescein diacetate succinimidyl ester) staining to assess their cell proliferation and their RNA was used for microarray analyses and quantitative PCR (qPCR). These MSC were also evaluated for their ability to inhibit PBMC (peripheral blood mononuclear cells) proliferation. We show here that simvastatin negatively modulates MSC proliferation in a dose-dependent way and regulates the expression of proliferation-related genes. Importantly, we observed that simvastatin increased the percentage of a subset of smaller MSC, which also were actively proliferating. The association of MSC decreased size with increased pluripotency and the accumulating evidence that statins may prevent cellular senescence led us to hypothesize that simvastatin induces a smaller subpopulation that may have increased ability to maintain the entire pool of MSC and also to protect them from cellular senescence induced by long-term cultures/passages in vitro. These results may be important to better understand the pleiotropic effects of statins and its effects on the biology of cells with regenerative potential.
Journal of Virology | 2017
Yehuda Z. Cohen; Julio C. C. Lorenzi; Michael S. Seaman; Lilian Nogueira; Till Schoofs; Lisa Krassnig; Allison L. Butler; Katrina Millard; Tomas Fitzsimons; Xiaoju G. Daniell; Juan P. Dizon; Irina Shimeliovich; David C. Montefiori; Marina Caskey; Michel C. Nussenzweig
ABSTRACT Recently discovered broadly neutralizing antibodies (bNAbs) against HIV-1 demonstrate extensive breadth and potency against diverse HIV-1 strains and represent a promising approach for the treatment and prevention of HIV-1 infection. The breadth and potency of these antibodies have primarily been evaluated by using panels of HIV-1 Env-pseudotyped viruses produced in 293T cells expressing molecularly cloned Env proteins. Here we report on the ability of five bNAbs currently in clinical development to neutralize circulating primary HIV-1 isolates derived from peripheral blood mononuclear cells (PBMCs) and compare the results to those obtained with the pseudovirus panels used to characterize the bNAbs. The five bNAbs demonstrated significantly less breadth and potency against clinical isolates produced in PBMCs than against Env-pseudotyped viruses. The magnitude of this difference in neutralizing activity varied, depending on the antibody epitope. Glycan-targeting antibodies showed differences of only 3- to 4-fold, while antibody 10E8, which targets the membrane-proximal external region, showed a nearly 100-fold decrease in activity between published Env-pseudotyped virus panels and PBMC-derived primary isolates. Utilizing clonal PBMC-derived primary isolates and molecular clones, we determined that the observed discrepancy in bNAb performance is due to the increased sensitivity to neutralization exhibited by 293T-produced Env-pseudotyped viruses. We also found that while full-length molecularly cloned viruses produced in 293T cells exhibit greater sensitivity to neutralization than PBMC-derived viruses do, Env-pseudotyped viruses produced in 293T cells generally exhibit even greater sensitivity to neutralization. As the clinical development of bNAbs progresses, it will be critical to determine the relevance of each of these in vitro neutralization assays to in vivo antibody performance. IMPORTANCE Novel therapeutic and preventive strategies are needed to contain the HIV-1 epidemic. Antibodies with exceptional neutralizing activity against HIV-1 may provide several advantages to traditional HIV drugs, including an improved side-effect profile, a reduced dosing frequency, and immune enhancement. The activity of these antibodies has been established in vitro by utilizing HIV-1 Env-pseudotyped viruses derived from circulating viruses but produced in 293T cells by pairing Env proteins with a backbone vector. We tested PBMC-produced circulating viruses against five anti-HIV-1 antibodies currently in clinical development. We found that the activity of these antibodies against PBMC isolates is significantly less than that against 293T Env-pseudotyped viruses. This decline varied among the antibodies tested, with some demonstrating moderate reductions in activity and others showing an almost 100-fold reduction. As the development of these antibodies progresses, it will be critical to determine how the results of different in vitro tests correspond to performance in the clinic.