Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dalila Pinto is active.

Publication


Featured researches published by Dalila Pinto.


Nature | 2010

Origins and functional impact of copy number variation in the human genome

Donald F. Conrad; Dalila Pinto; Richard Redon; Lars Feuk; Omer Gokcumen; Yujun Zhang; Jan Aerts; T. Daniel Andrews; C. Barnes; Peter J. Campbell; Tomas Fitzgerald; Min Hu; Chun Hwa Ihm; Kati Kristiansson; Daniel G. MacArthur; Jeffrey R. MacDonald; Ifejinelo Onyiah; Andy Wing Chun Pang; Samuel Robson; Kathy Stirrups; Armand Valsesia; Klaudia Walter; John T. Wei; Chris Tyler-Smith; Nigel P. Carter; Charles Lee; Stephen W. Scherer

Structural variations of DNA greater than 1 kilobase in size account for most bases that vary among human genomes, but are still relatively under-ascertained. Here we use tiling oligonucleotide microarrays, comprising 42 million probes, to generate a comprehensive map of 11,700 copy number variations (CNVs) greater than 443 base pairs, of which most (8,599) have been validated independently. For 4,978 of these CNVs, we generated reference genotypes from 450 individuals of European, African or East Asian ancestry. The predominant mutational mechanisms differ among CNV size classes. Retrotransposition has duplicated and inserted some coding and non-coding DNA segments randomly around the genome. Furthermore, by correlation with known trait-associated single nucleotide polymorphisms (SNPs), we identified 30 loci with CNVs that are candidates for influencing disease susceptibility. Despite this, having assessed the completeness of our map and the patterns of linkage disequilibrium between CNVs and SNPs, we conclude that, for complex traits, the heritability void left by genome-wide association studies will not be accounted for by common CNVs.


American Journal of Human Genetics | 2008

Structural Variation of Chromosomes in Autism Spectrum Disorder

Christian R. Marshall; Abdul Noor; John B. Vincent; Anath C. Lionel; Lars Feuk; Jennifer Skaug; Mary Shago; Rainald Moessner; Dalila Pinto; Yan Ren; Bhooma Thiruvahindrapduram; Andreas Fiebig; Stefan Schreiber; Jan M. Friedman; Cees Ketelaars; Yvonne J. Vos; Can Ficicioglu; Susan J. Kirkpatrick; Rob Nicolson; Leon Sloman; Anne Summers; Clare A. Gibbons; Ahmad S. Teebi; David Chitayat; Rosanna Weksberg; Ann Thompson; Cathy Vardy; Vicki Crosbie; Sandra Luscombe; Rebecca Baatjes

Structural variation (copy number variation [CNV] including deletion and duplication, translocation, inversion) of chromosomes has been identified in some individuals with autism spectrum disorder (ASD), but the full etiologic role is unknown. We performed genome-wide assessment for structural abnormalities in 427 unrelated ASD cases via single-nucleotide polymorphism microarrays and karyotyping. With microarrays, we discovered 277 unbalanced CNVs in 44% of ASD families not present in 500 controls (and re-examined in another 1152 controls). Karyotyping detected additional balanced changes. Although most variants were inherited, we found a total of 27 cases with de novo alterations, and in three (11%) of these individuals, two or more new variants were observed. De novo CNVs were found in approximately 7% and approximately 2% of idiopathic families having one child, or two or more ASD siblings, respectively. We also detected 13 loci with recurrent/overlapping CNV in unrelated cases, and at these sites, deletions and duplications affecting the same gene(s) in different individuals and sometimes in asymptomatic carriers were also found. Notwithstanding complexities, our results further implicate the SHANK3-NLGN4-NRXN1 postsynaptic density genes and also identify novel loci at DPP6-DPP10-PCDH9 (synapse complex), ANKRD11, DPYD, PTCHD1, 15q24, among others, for a role in ASD susceptibility. Our most compelling result discovered CNV at 16p11.2 (p = 0.002) (with characteristics of a genomic disorder) at approximately 1% frequency. Some of the ASD regions were also common to mental retardation loci. Structural variants were found in sufficiently high frequency influencing ASD to suggest that cytogenetic and microarray analyses be considered in routine clinical workup.


American Journal of Human Genetics | 2007

Contribution of SHANK3 Mutations to Autism Spectrum Disorder

Rainald Moessner; Christian R. Marshall; James S. Sutcliffe; Jennifer Skaug; Dalila Pinto; John B. Vincent; Lonnie Zwaigenbaum; Bridget A. Fernandez; Wendy Roberts; Peter Szatmari; Stephen W. Scherer

Mutations in SHANK3, which encodes a synaptic scaffolding protein, have been described in subjects with an autism spectrum disorder (ASD). To assess the quantitative contribution of SHANK3 to the pathogenesis of autism, we determined the frequency of DNA sequence and copy-number variants in this gene in 400 ASD-affected subjects ascertained in Canada. One de novo mutation and two gene deletions were discovered, indicating a contribution of 0.75% in this cohort. One additional SHANK3 deletion was characterized in two ASD-affected siblings from another collection, which brings the total number of published mutations in unrelated ASD-affected families to seven. The combined data provide support that haploinsufficiency of SHANK3 can cause a monogenic form of autism in sufficient frequency to warrant consideration in clinical diagnostic testing.


Nature Genetics | 2010

Mutations in the SHANK2 synaptic scaffolding gene in autism spectrum disorder and mental retardation

Simone Berkel; Christian R. Marshall; Birgit Weiss; Jennifer L. Howe; Ralph Roeth; Ute Moog; Volker Endris; Wendy Roberts; Peter Szatmari; Dalila Pinto; Michael Bonin; Angelika Riess; Hartmut Engels; Rolf Sprengel; Stephen W. Scherer; Gudrun Rappold

Using microarrays, we identified de novo copy number variations in the SHANK2 synaptic scaffolding gene in two unrelated individuals with autism-spectrum disorder (ASD) and mental retardation. DNA sequencing of SHANK2 in 396 individuals with ASD, 184 individuals with mental retardation and 659 unaffected individuals (controls) revealed additional variants that were specific to ASD and mental retardation cases, including a de novo nonsense mutation and seven rare inherited changes. Our findings further link common genes between ASD and intellectual disability.


PLOS Genetics | 2010

Identifying signatures of natural selection in Tibetan and Andean populations using dense genome scan data

Abigail W. Bigham; Marc Bauchet; Dalila Pinto; Xianyun Mao; Joshua M. Akey; Rui Mei; Stephen W. Scherer; Colleen G. Julian; Megan J. Wilson; David López Herráez; Tom D. Brutsaert; Esteban J. Parra; Lorna G. Moore; Mark D. Shriver

High-altitude hypoxia (reduced inspired oxygen tension due to decreased barometric pressure) exerts severe physiological stress on the human body. Two high-altitude regions where humans have lived for millennia are the Andean Altiplano and the Tibetan Plateau. Populations living in these regions exhibit unique circulatory, respiratory, and hematological adaptations to life at high altitude. Although these responses have been well characterized physiologically, their underlying genetic basis remains unknown. We performed a genome scan to identify genes showing evidence of adaptation to hypoxia. We looked across each chromosome to identify genomic regions with previously unknown function with respect to altitude phenotypes. In addition, groups of genes functioning in oxygen metabolism and sensing were examined to test the hypothesis that particular pathways have been involved in genetic adaptation to altitude. Applying four population genetic statistics commonly used for detecting signatures of natural selection, we identified selection-nominated candidate genes and gene regions in these two populations (Andeans and Tibetans) separately. The Tibetan and Andean patterns of genetic adaptation are largely distinct from one another, with both populations showing evidence of positive natural selection in different genes or gene regions. Interestingly, one gene previously known to be important in cellular oxygen sensing, EGLN1 (also known as PHD2), shows evidence of positive selection in both Tibetans and Andeans. However, the pattern of variation for this gene differs between the two populations. Our results indicate that several key HIF-regulatory and targeted genes are responsible for adaptation to high altitude in Andeans and Tibetans, and several different chromosomal regions are implicated in the putative response to selection. These data suggest a genetic role in high-altitude adaption and provide a basis for future genotype/phenotype association studies necessary to confirm the role of selection-nominated candidate genes and gene regions in adaptation to altitude.


Nature Biotechnology | 2011

Comprehensive assessment of array-based platforms and calling algorithms for detection of copy number variants.

Dalila Pinto; Katayoon Darvishi; Xinghua Shi; Diana Rajan; Diane Rigler; Tom Fitzgerald; Anath C. Lionel; Bhooma Thiruvahindrapuram; Jeffrey R. MacDonald; Ryan E. Mills; Aparna Prasad; Kristin M Noonan; Susan Gribble; Elena Prigmore; Patricia K. Donahoe; Richard S Smith; Ji Hyeon Park; Nigel P. Carter; Charles Lee; Stephen W. Scherer; Lars Feuk

We have systematically compared copy number variant (CNV) detection on eleven microarrays to evaluate data quality and CNV calling, reproducibility, concordance across array platforms and laboratory sites, breakpoint accuracy and analysis tool variability. Different analytic tools applied to the same raw data typically yield CNV calls with <50% concordance. Moreover, reproducibility in replicate experiments is <70% for most platforms. Nevertheless, these findings should not preclude detection of large CNVs for clinical diagnostic purposes because large CNVs with poor reproducibility are found primarily in complex genomic regions and would typically be removed by standard clinical data curation. The striking differences between CNV calls from different platforms and analytic tools highlight the importance of careful assessment of experimental design in discovery and association studies and of strict data curation and filtering in diagnostics. The CNV resource presented here allows independent data evaluation and provides a means to benchmark new algorithms.


PLOS Genetics | 2012

Genetic and Functional Analyses of SHANK2 Mutations Suggest a Multiple Hit Model of Autism Spectrum Disorders

Claire S. Leblond; Jutta Heinrich; Richard Delorme; Christian Proepper; Catalina Betancur; Guillaume Huguet; Marina Konyukh; Pauline Chaste; Elodie Ey; Maria Råstam; Henrik Anckarsäter; Gudrun Nygren; I. Carina Gillberg; Jonas Melke; Roberto Toro; Béatrice Regnault; Fabien Fauchereau; Oriane Mercati; Nathalie Lemière; David Skuse; Martin Poot; Richard Holt; Anthony P. Monaco; Irma Järvelä; Katri Kantojärvi; Raija Vanhala; Sarah Curran; David A. Collier; Patrick Bolton; Andreas G. Chiocchetti

Autism spectrum disorders (ASD) are a heterogeneous group of neurodevelopmental disorders with a complex inheritance pattern. While many rare variants in synaptic proteins have been identified in patients with ASD, little is known about their effects at the synapse and their interactions with other genetic variations. Here, following the discovery of two de novo SHANK2 deletions by the Autism Genome Project, we identified a novel 421 kb de novo SHANK2 deletion in a patient with autism. We then sequenced SHANK2 in 455 patients with ASD and 431 controls and integrated these results with those reported by Berkel et al. 2010 (n = 396 patients and n = 659 controls). We observed a significant enrichment of variants affecting conserved amino acids in 29 of 851 (3.4%) patients and in 16 of 1,090 (1.5%) controls (P = 0.004, OR = 2.37, 95% CI = 1.23–4.70). In neuronal cell cultures, the variants identified in patients were associated with a reduced synaptic density at dendrites compared to the variants only detected in controls (P = 0.0013). Interestingly, the three patients with de novo SHANK2 deletions also carried inherited CNVs at 15q11–q13 previously associated with neuropsychiatric disorders. In two cases, the nicotinic receptor CHRNA7 was duplicated and in one case the synaptic translation repressor CYFIP1 was deleted. These results strengthen the role of synaptic gene dysfunction in ASD but also highlight the presence of putative modifier genes, which is in keeping with the “multiple hit model” for ASD. A better knowledge of these genetic interactions will be necessary to understand the complex inheritance pattern of ASD.


Genome Biology | 2010

Towards a comprehensive structural variation map of an individual human genome

Andy Wing Chun Pang; Jeffrey R. MacDonald; Dalila Pinto; John Wei; Muhammad A Rafiq; Donald F. Conrad; Hansoo Park; Charles Lee; J. Craig Venter; Ewen F. Kirkness; Samuel Levy; Lars Feuk; Stephen W. Scherer

BackgroundSeveral genomes have now been sequenced, with millions of genetic variants annotated. While significant progress has been made in mapping single nucleotide polymorphisms (SNPs) and small (<10 bp) insertion/deletions (indels), the annotation of larger structural variants has been less comprehensive. It is still unclear to what extent a typical genome differs from the reference assembly, and the analysis of the genomes sequenced to date have shown varying results for copy number variation (CNV) and inversions.ResultsWe have combined computational re-analysis of existing whole genome sequence data with novel microarray-based analysis, and detect 12,178 structural variants covering 40.6 Mb that were not reported in the initial sequencing of the first published personal genome. We estimate a total non-SNP variation content of 48.8 Mb in a single genome. Our results indicate that this genome differs from the consensus reference sequence by approximately 1.2% when considering indels/CNVs, 0.1% by SNPs and approximately 0.3% by inversions. The structural variants impact 4,867 genes, and >24% of structural variants would not be imputed by SNP-association.ConclusionsOur results indicate that a large number of structural variants have been unreported in the individual genomes published to date. This significant extent and complexity of structural variants, as well as the growing recognition of their medical relevance, necessitate they be actively studied in health-related analyses of personal genomes. The new catalogue of structural variants generated for this genome provides a crucial resource for future comparison studies.


American Journal of Human Genetics | 2012

SHANK1 Deletions in Males with Autism Spectrum Disorder

Daisuke Sato; Anath C. Lionel; Claire S. Leblond; Aparna Prasad; Dalila Pinto; Susan Walker; Irene O'Connor; Carolyn Russell; Irene Drmic; Fadi F. Hamdan; Jacques L. Michaud; Volker Endris; Ralph Roeth; Richard Delorme; Guillaume Huguet; Marion Leboyer; Maria Råstam; Christopher Gillberg; Mark Lathrop; Dimitri J. Stavropoulos; Evdokia Anagnostou; Rosanna Weksberg; Eric Fombonne; Lonnie Zwaigenbaum; Bridget A. Fernandez; Wendy Roberts; Gudrun Rappold; Christian R. Marshall; Thomas Bourgeron; Peter Szatmari

Recent studies have highlighted the involvement of rare (<1% frequency) copy-number variations and point mutations in the genetic etiology of autism spectrum disorder (ASD); these variants particularly affect genes involved in the neuronal synaptic complex. The SHANK gene family consists of three members (SHANK1, SHANK2, and SHANK3), which encode scaffolding proteins required for the proper formation and function of neuronal synapses. Although SHANK2 and SHANK3 mutations have been implicated in ASD and intellectual disability, the involvement of SHANK1 is unknown. Here, we assess microarray data from 1,158 Canadian and 456 European individuals with ASD to discover microdeletions at the SHANK1 locus on chromosome 19. We identify a hemizygous SHANK1 deletion that segregates in a four-generation family in which male carriers--but not female carriers--have ASD with higher functioning. A de novo SHANK1 deletion was also detected in an unrelated male individual with ASD with higher functioning, and no equivalent SHANK1 mutations were found in >15,000 controls (p = 0.009). The discovery of apparent reduced penetrance of ASD in females bearing inherited autosomal SHANK1 deletions provides a possible contributory model for the male gender bias in autism. The data are also informative for clinical-genetics interpretations of both inherited and sporadic forms of ASD involving SHANK1.


PLOS Genetics | 2014

Meta-analysis of SHANK Mutations in Autism Spectrum Disorders: A Gradient of Severity in Cognitive Impairments

Claire S. Leblond; Caroline Nava; Anne Polge; Julie Gauthier; Guillaume Huguet; Serge Lumbroso; Fabienne Giuliano; Coline Stordeur; Christel Depienne; Kevin Mouzat; Dalila Pinto; Jennifer L. Howe; Nathalie Lemière; Christelle M. Durand; Jessica Guibert; Elodie Ey; Roberto Toro; Hugo Peyre; Alexandre Mathieu; Frédérique Amsellem; Maria Råstam; I. Carina Gillberg; Gudrun Rappold; Richard Holt; Anthony P. Monaco; Elena Maestrini; Pilar Galan; Delphine Héron; Aurélia Jacquette; Alexandra Afenjar

SHANK genes code for scaffold proteins located at the post-synaptic density of glutamatergic synapses. In neurons, SHANK2 and SHANK3 have a positive effect on the induction and maturation of dendritic spines, whereas SHANK1 induces the enlargement of spine heads. Mutations in SHANK genes have been associated with autism spectrum disorders (ASD), but their prevalence and clinical relevance remain to be determined. Here, we performed a new screen and a meta-analysis of SHANK copy-number and coding-sequence variants in ASD. Copy-number variants were analyzed in 5,657 patients and 19,163 controls, coding-sequence variants were ascertained in 760 to 2,147 patients and 492 to 1,090 controls (depending on the gene), and, individuals carrying de novo or truncating SHANK mutations underwent an extensive clinical investigation. Copy-number variants and truncating mutations in SHANK genes were present in ∼1% of patients with ASD: mutations in SHANK1 were rare (0.04%) and present in males with normal IQ and autism; mutations in SHANK2 were present in 0.17% of patients with ASD and mild intellectual disability; mutations in SHANK3 were present in 0.69% of patients with ASD and up to 2.12% of the cases with moderate to profound intellectual disability. In summary, mutations of the SHANK genes were detected in the whole spectrum of autism with a gradient of severity in cognitive impairment. Given the rare frequency of SHANK1 and SHANK2 deleterious mutations, the clinical relevance of these genes remains to be ascertained. In contrast, the frequency and the penetrance of SHANK3 mutations in individuals with ASD and intellectual disability—more than 1 in 50—warrant its consideration for mutation screening in clinical practice.

Collaboration


Dive into the Dalila Pinto's collaboration.

Top Co-Authors

Avatar

Stephen W. Scherer

The Centre for Applied Genomics

View shared research outputs
Top Co-Authors

Avatar

Christian R. Marshall

The Centre for Applied Genomics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anath C. Lionel

The Centre for Applied Genomics

View shared research outputs
Top Co-Authors

Avatar

Peter Szatmari

Centre for Addiction and Mental Health

View shared research outputs
Top Co-Authors

Avatar

Joseph D. Buxbaum

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Amanda Dobbyn

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge