Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dalila Trupiano is active.

Publication


Featured researches published by Dalila Trupiano.


Electrophoresis | 2010

The proteome of lentil (Lens culinaris Medik.) seeds: Discriminating between landraces

Gabriella S. Scippa; Mariapina Rocco; Manuela Ialicicco; Dalila Trupiano; Vincenzo Viscosi; Michela Di Michele; Simona Arena; Donato Chiatante; Andrea Scaloni

Lentil (Lens culinaris Medik.) is one of the most ancient crops of the Mediterranean region used for human nutrition; an extensive differentiation of L. culinaris over millennia has resulted in a number of different landraces. As a consequence of environmental and socio‐economic issues, the disappearance of many of them occurred in more recent times. To investigate the potential of proteomics as a tool in phylogenetic studies, testing the possibility to identify specific markers of different plant landraces, 2‐D gel electrophoretic maps of mature seeds were obtained from seven lentil populations belonging to a local ecotype (Capracotta) and five commercial varieties (Turca Rossa, Canadese, Castelluccio di Norcia, Rascino and Colfiorito). 2‐DE analysis resolved hundreds of protein species in each lentil sample, among which only 122 were further identified by MALDI‐TOF PMF and/or nanoLC‐ESI‐LIT‐MS/MS, probably as a result of the poor information available on L. culinaris genome. A comparison of these maps revealed that 103 protein spots were differentially expressed within and between populations. The multivariate statistical analyses carried out on these variably expressed spots showed that 24 protein species were essential for population discrimination, thus determining their proposition as landrace markers. Besides providing the first reference map of mature lentil seeds, our data confirm previous studies based on morphological/genetic observations and further support the valuable use of proteomic techniques as phylogenetic tool in plant studies.


Planta | 2013

Identification, characterization of an AP2/ERF transcription factor that promotes adventitious, lateral root formation in Populus

Dalila Trupiano; Yordan S. Yordanov; Sharon Regan; Richard Meilan; Timothy J. Tschaplinski; Gabriella S. Scippa; Victor Busov

Using activation tagging in Populus, we have identified five mutant lines showing changes in their adventitious rooting. Among the affected lines, three showed increased and two decreased adventitious rooting. We have positioned the tag in the mutant lines via recovering genomic sequences flanking the left-hand border of the activation tagging vector and validated the transcriptional activation of the proximal genes. We further characterized one line in which the cause of the observed rooting phenotype was up-regulation of a gene encoding a transcription factor of the AP2/ERF family of unknown function (PtaERF003). We show, through retransformation, that this gene has a positive effect on both adventitious and lateral root proliferation. Comparative expression analyses show that the phenotype does not result from ectopic expression but rather up-regulation of the native expression pattern of the gene. PtaERF003 function is linked to auxin signal transduction pathway, as suggested by the rapid induction and accentuated phenotypes of the transgenic plants in presence of the hormone. Upregulation of PtaERF003 led to most significant metabolic changes in the shoot suggesting of a broader regulatory role of the gene that is not restricted to root growth and development. Our study shows that dominant tagging approaches in poplar can successfully identify novel molecular factors controlling adventitious and lateral root formation in woody plants. Such discoveries can lead to technologies that can increase root proliferation and, thus, have significant economic and environmental benefits.


Plant Biosystems | 2008

Unravelling the response of poplar (Populus nigra) roots to mechanical stress imposed by bending

Gabriella S. Scippa; Dalila Trupiano; Mariapina Rocco; Antonino Di Iorio; Donato Chiatante

Abstract Mechanical stress is a widespread environmental condition that can be caused by several factors (i.e. gravity, touch, wind, soil density, soil compaction and grazing, slope) and that can severely affect plant stability. In response to mechanical stress and to improve their anchorage, plants have developed complex mechanisms to detect mechanical perturbation and to induce a suite of modifications at anatomical, physiological, biochemical, biophysical and molecular level. Although it is well recognized that one of the primary functions of root systems is to anchor the plant to the soil, root response to mechanical stresses have been investigated mainly at morphological and biomechanical level, whereas investigations about the molecular mechanisms underlying these important alterations are still in an initial stage. We have used an experimental system in which the taproot poplar seedlings are bent to simulate mechanical perturbation to begin investigate the mechanisms involved in root response to mechanical stress. The results reported herein show that, in response to bending, the poplar root changes its morphology by emitting new lateral roots, and its biomechanical properties by increasing the root biomass and lignin synthesis. In addition, using a proteomic approach, we found that several proteins involved in the signal transduction pathway, detoxification and metabolism are up-regulated and/or down-regulated in the bent root. These results provide new insight into the obscure field of woody root response to mechanical stress, and can serve as a basis for future investigations aimed at unravelling the complex mechanism involved in the reaction of root biology to environmental stress.


Physiologia Plantarum | 2012

Involvement of lignin and hormones in the response of woody poplar taproots to mechanical stress

Dalila Trupiano; Antonino Di Iorio; Antonio Montagnoli; Bruno Lasserre; Mariapina Rocco; Alessandro Grosso; Andrea Scaloni; Mauro Marra; Donato Chiatante; Gabriella S. Scippa

Mechanical stress is a widespread condition caused by numerous environmental factors that severely affect plant stability. In response to mechanical stress, plants have evolved complex response pathways able to detect mechanical perturbations and inducing a suite of modifications in order to improve anchorage. The response of woody roots to mechanical stresses has been studied mainly at the morphological and biomechanical level, whereas investigations on the factors triggering these important alterations are still at the initial stage. Populus has been widely used to study the response of stem to different mechanical stresses and, since it has the first forest tree genome to be decoded, represents a model woody plant for addressing questions on the mechanisms controlling adaptation of woody roots to changing environments. In this study, a morphological and physiological analysis was used to investigate factors controlling modifications in Populus nigra woody taproots subjected to mechanical stress. An experimental model analyzing spatial and temporal mechanical force distribution along the woody taproot axis enabled us to compare the events occurring in its above-, central- and below-bending sectors. Different morphogenetic responses and local variations of lignin and plant hormones content have been observed, and a relation with the distribution of the mechanical forces along the stressed woody taproots is hypothesized. We investigated the differences of the response to mechanical stress induction during the time; in this regard, we present data referring to the effect of mechanical stress on plant transition from its condition of winter dormancy to that of full vegetative activity.


Annals of Botany | 2012

The proteome of Populus nigra woody root: response to bending

Dalila Trupiano; Mariapina Rocco; Giovanni Renzone; Andrea Scaloni; Vincenzo Viscosi; Donato Chiatante; Gabriella S. Scippa

BACKGROUND AND AIMS Morphological and biomechanical alterations occurring in woody roots of many plant species in response to mechanical stresses are well documented; however, little is known about the molecular mechanisms regulating these important alterations. The first forest tree genome to be decoded is that of Populus, thereby providing a tool with which to investigate the mechanisms controlling adaptation of woody roots to changing environments. The aim of this study was to use a proteomic approach to investigate the response of Populus nigra woody taproot to mechanical stress. METHODS To simulate mechanical perturbations, the taproots of 30 one-year-old seedlings were bent to an angle of 90 ° using a steel net. A spatial and temporal two-dimensional proteome map of the taproot axis was obtained. We compared the events occurring in the above-bending, central bending and below-bending sectors of the taproot. KEY RESULTS The first poplar woody taproot proteome map is reported here; a total of 207 proteins were identified. Spatial and temporal proteomic analysis revealed that factors involved in plant defence, metabolism, reaction wood formation and lateral root development were differentially expressed in the various sectors of bent vs. control roots, seemingly in relation to the distribution of mechanical forces along the stressed woody taproots. A complex interplay among different signal transduction pathways involving reactive oxygen species appears to modulate these responses. CONCLUSIONS Poplar woody root uses different temporal and spatial mechanisms to respond to mechanical stress. Long-term bending treatment seem to reinforce the defence machinery, thereby enabling the taproot to better overcome winter and to be ready to resume growth earlier than controls.


Journal of Plant Physiology | 2015

Effect of short-term cadmium stress on Populus nigra L. detached leaves.

Tonia Lomaglio; Mariapina Rocco; Dalila Trupiano; Elena De Zio; Alessandro Grosso; Mauro Marra; Sebastiano Delfine; Donato Chiatante; Domenico Morabito; Gabriella S. Scippa

Pollution by toxic metals, accumulating into soils as result of human activities, is a worldwide major concern in industrial countries. Plants exhibit different degrees of tolerance to heavy metals, as a consequence of their ability to exclude or accumulate them in particular tissues, organs or sub-cellular compartments. Molecular information about cellular processes affected by heavy metals is still largely incomplete. As a fast-growing, highly tolerant perennial plant species, poplar has become a model for environmental stress response investigations. To study the short-term effects of cadmium accumulation in leaves, we analyzed photosystem II (PSII) quantum yield, hydrogen peroxide (H2O2) generation, hormone levels variation, as well as proteome profile alteration of 50μM CdSO4 vacuum-infiltrated poplar (Populus nigra L.) detached leaves. Cadmium management brought about an early and sustained production of hydrogen peroxide, an increase of abscisic acid, ethylene and gibberellins content, as well as a decrease in cytokinins and auxin levels, whereas photosynthetic electron transport was unaffected. Proteomic analysis revealed that twenty-one proteins were differentially induced in cadmium-treated leaves. Identification of fifteen polypeptides allowed to ascertain that most of them were involved in stress response while the remaining ones were involved in photosynthetic carbon metabolism and energy production.


Planta | 2015

MicroRNAs expression patterns in the response of poplar woody root to bending stress

Miriam Rossi; Dalila Trupiano; Manuela Tamburro; Giancarlo Ripabelli; Antonio Montagnoli; Donato Chiatante; Gabriella S. Scippa

AbstractMain conclusionThe paper reports for the first time, in poplar woody root, the expression of five mechanically-responsive miRNAs. The observed highly complex expression pattern of these miRNAs in the bent root suggest that their expression is not only regulated by tension and compression forces highlighting their role in several important processes, i.e., lateral root formation, lignin deposition, and response to bending stress. Mechanical stress is one of the major abiotic stresses significantly affecting plant stability, growth, survival, and reproduction. Plants have developed complex machineries to detect mechanical perturbations and to improve their anchorage. MicroRNAs (miRNAs), small non-coding RNAs (18–24 nucleotides long), have been shown to regulate various stress-responsive genes, proteins and transcription factors, and play a crucial role in counteracting adverse conditions. Several mechanical stress-responsive miRNAs have been identified in the stem of Populus trichocarpa plants subjected to bending stress. However, despite the pivotal role of woody roots in plant anchorage, molecular mechanisms regulating poplar woody root responses to mechanical stress have still been little investigated. In the present paper, we investigate the spatial and temporal expression pattern of five mechanically-responsive miRNAs in three regions of bent poplar woody taproot and unstressed controls by quantitative RT-PCR analysis. Alignment of the cloned and sequenced amplified fragments confirmed that their nucleotide sequences are homologous to the mechanically-responsive miRNAs identified in bent poplar stem. Computational analysis identified putative target genes for each miRNA in the poplar genome. Additional miRNA target sites were found in several mechanical stress-related factors previously identified in poplar root and a subset of these was further analyzed for expression at the mRNA or protein level. Integrating the results of miRNAs expression patterns and target gene functions with our previous morphological and proteomic data, we concluded that the five miRNAs play crucial regulatory roles in reaction woody formation and lateral root development in mechanically-stressed poplar taproot.


Journal of Plant Physiology | 2014

Proteomic analysis of Populus × euramericana (clone I-214) roots to identify key factors involved in zinc stress response.

Stefania Romeo; Dalila Trupiano; Andrea Ariani; Giovanni Renzone; Gabriella S. Scippa; Andrea Scaloni; L. Sebastiani

Contamination of soil and water by heavy metals has become a widespread problem; environmental pollution by high zinc (Zn) concentration occurs frequently. Although poplar (Populus spp.) has been identified as suitable for phytoremediation approaches, its response to high Zn concentrations are still not clearly understood. For this reason, we investigated the effects of Zn in Populus×euramericana clone I-214 roots by proteomic analysis. Comparative experiments were conducted on rooted woody cuttings grown in nutrient solutions containing 1mM (treatment) or 1μM (control) Zn concentrations. A gel-based proteomic approach coupled with morphological and chemical analysis was used to identify differentially represented proteins in treated roots and to investigate the effect of Zn treatment on the poplar root system. Data shows that Zn was accumulated preferentially in roots, that the antioxidant system, the carbohydrate/energy and amino acid metabolisms were the main pathways modulated by Zn excess, and that mitochondria and vacuoles were the cellular organelles predominately affected by Zn stress. A coordination between cell death and proliferation/growth seems to occur under this condition to counteract the Zn-induced damage.


Physiologia Plantarum | 2014

Temporal analysis of poplar woody root response to bending stress

Dalila Trupiano; Mariapina Rocco; Giovanni Renzone; Andrea Scaloni; Miriam Rossi; Vincenzo Viscosi; Donato Chiatante; Gabriella S. Scippa

Temperate perennial woody plants use different environmental signals to coordinate their growth and development in relation to seasonal changes. Preliminary evidences suggest that, even during dormancy, plants maintain effective metabolic activities and molecular mechanisms ensuring them an eventual recording of mechanical loads during winter times. Despite their great importance for productivity and survival, plant biology investigations have poorly characterized the root growth cycle and its response to environmental stresses. In this study, we describe the proteomic changes occurring over the time in poplar root either in the absence or in response to a bending stress; corresponding expression of cell cycle regulator and auxin transporter genes was also evaluated by reverse transcription polymerase chain reaction analysis. Our results confirm previous evidences on the effect of the bending stress on the anticipation of root growth resumption, providing additional insights on a temporal modulation of various plant metabolic processes involved in dormancy break, growth resumption and stress response in the bent root; these events seem related to the differential compression and tension force distribution occurring over the plant taproot.


Heredity | 2008

An integrated approach to the characterization of two autochthonous lentil ( Lens culinaris ) landraces of Molise (south-central Italy)

Gabriella S. Scippa; Dalila Trupiano; Mariapina Rocco; Vincenzo Viscosi; M Di Michele; A D'Andrea; Donato Chiatante

Plant biodiversity must be safeguarded because it constitutes a resource of genes that may be used, for instance, in breeding programs. Lentil (Lens culinaris Medik.) is one of the most ancient crops of the Mediterranean region. Extensive differentiation of L. culinaris over millennia has resulted in a myriad of different landraces. However, in more recent times many landraces have disappeared consequent to environmental and socioeconomic changes. To promote the survival of endangered lentil landraces, we have investigated the genetic relationship between two ancient landrace cultivated in Capracotta and Conca Casale (Molise, south-central Italy) and widely spread commercial varieties using an integrated approach consisting of studies at morphological, DNA and protein level. Seeds of these two landraces were collected from local farmers and conserved in the Molise germoplasm bank. The two local landraces were well differentiated from each other, and the Conca Casale landrace was separated from the commercial varieties at morphological, protein and DNA level. The Capracotta landrace, was well separated from the commercial varieties, except Castelluccio di Norcia, at DNA level showing a more complex and heterogeneous segregation at morphological and biochemical level. The correlation between morphological, DNA and protein data, illustrates that proteomics is a powerful tool with which to complement the analysis of biodiversity in ecotypes of a single plant species and to identify physiological and/or environmental markers.

Collaboration


Dive into the Dalila Trupiano's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea Scaloni

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Simona Arena

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge