Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Damayanti Bagchi is active.

Publication


Featured researches published by Damayanti Bagchi.


RSC Advances | 2015

Modulation of stability and functionality of a phyto-antioxidant by weakly interacting metal ions: curcumin in aqueous solution

Damayanti Bagchi; Siddhi Chaudhuri; Samim Sardar; Susobhan Choudhury; Nabarun Polley; Peter Lemmens; Samir Kumar Pal

The natural polyphenol curcumin and its metal coordinated complexes show obvious benefits in the medical therapies of cancer and several neurodegenerative diseases. On the other side their stability and bioavailability are critical issues. The present study is an attempt to address the stability and functionality of curcumin upon complexation with transition metal ions. We have synthesized and optically characterized metallo–curcumin complexes with Cu(II) and Zn(II). From femtosecond resolved upconversion studies an interaction at the molecular level is revealed based on an observed photoinduced electron transfer from curcumin to the metal ions. In order to investigate the antioxidant activity of the complexes, we have performed a 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay in dark. The Cu(II)–curcumin complex exhibits an enhanced and recyclable activity, more pronounced compared to that of the Zn(II)–curcumin complex, which can be attributed to the weaker O–H bond present in the former case. In contrast, the Zn(II) complex has a higher solubility and stability in aqueous media than the Cu(II) complex. To address stability vs. functionality issues, we have suggested a facile method that enhances the solubility and stability of curcumin in aqueous media by metalation with Zn(II) and a successional replacement of Zn(II) in the complex by Cu(II) through a simple route to enhance the activity prior to its use. We have also used the complex in a model anti-bacteriological assay experiment where it shows significantly higher activity compared to pure curcumin. The dichlorofluorescin (DCFH) oxidation indicates an enhancement in ROS generation, which in turn is responsible for the enhanced antioxidative property of the Cu(II)–curcumin complex. Our results provide a promising method to use metallo–curcumin complexes in diverse biological applications.


Journal of Physical Chemistry A | 2015

Sensitization of an Endogenous Photosensitizer: Electronic Spectroscopy of Riboflavin in the Proximity of Semiconductor, Insulator, and Metal Nanoparticles

Siddhi Chaudhuri; Samim Sardar; Damayanti Bagchi; Shib Shankar Singha; Peter Lemmens; Samir Kumar Pal

Riboflavin (Rf) is a class of important vitamins (Vitamin B2) and a well-known antioxidant. Here we have synthesized nanohybrids of Rf with a number of inorganic nanoparticles (NPs); namely zinc oxide (ZnO), titanium oxide (TiO2), aluminum oxide (Al2O3) and gold NPs of similar sizes. While high resolution transmission electron microscopy (HRTEM) confirms integrity and sizes of the NPs, intactness of the molecular structure of the drug Rf is revealed from absorption and steady-state emission spectra of the drug in the nanohybrid. Raman spectroscopy on the nanohybrids shows the nature of molecular complexation of the drug with the inorganic NPs. For the semiconductor and insulator NPs, the complexation is found to be noncovalent, however, a covalent attachment of the drug with the dangling bonds of metal atoms at the surface is observed. In order to investigate antioxidant activity of the nanohybrids, we have performed 2, 2-diphenyl-1-picrylhydrazyl (DPPH) assay of the nanohybrids in dark as well as under blue light irradiation. Whereas change of the antioxidant activity of the nanohybrids with respect to free riboflavin in the absence of light is observed to be insignificant, a drastic change in the activity in the case of TiO2 and ZnO in the presence of light is evident. No change in the case of Al2O3 and a significant decrease in the antioxidant activity for gold nanohybrids are also remarkable. Picosecond-resolved fluorescence studies on the nanohybrids reveal a molecular picture of the differential antioxidant activities. An ultrafast photoinduced electron transfer from Rf to ZnO and TiO2 are clearly evident from the corresponding fluorescence transients. We have compared the picosecond-resolved transients with that of Rf in the presence of a well-known electron acceptor benzoquinone (BQ) and found similar time scales. No temporal change in the fluorescence transient of riboflavin in Al2O3 nanohybrids compared to that of free Rf is observed indicating uneventful excited state relaxation of the nanohybrids. Nanosurface energy transfer (NSET) over Förster resonance energy transfer (FRET) is found to be the prevailing de-excitation mechanism in the case of gold nanohybrids, because of the strong spectral overlap between Rf emission and surface plasmon absorption of the gold NPs. Different excited state mechanisms as revealed from our studies are expected to be useful for the design of NP-sensitized drugs, which are reported sparsely in the literature.


ChemPhysChem | 2016

Photoinduced Dynamics and Toxicity of a Cancer Drug in Proximity of Inorganic Nanoparticles under Visible Light.

Siddhi Chaudhuri; Samim Sardar; Damayanti Bagchi; Shreyasi Dutta; Sushanta Debnath; Partha Saha; Peter Lemmens; Samir Kumar Pal

Drug sensitization with various inorganic nanoparticles (NPs) has proved to be a promising and an emergent concept in the field of nanomedicine. Rose bengal (RB), a notable photosensitizer, triggers the formation of reactive oxygen species under green-light irradiation, and consequently, it induces cytotoxicity and cell death. In the present study, the effect of photoinduced dynamics of RB upon complexation with semiconductor zinc oxide NPs is explored. To accomplish this, we successfully synthesized nanohybrids of RB with ZnO NPs with a particle size of 24 nm and optically characterized them. The uniform size and integrity of the particles were confirmed by high-resolution transmission electron microscopy. UV/Vis absorption and steady-state fluorescence studies reveal the formation of the nanohybrids. ultrafast picosecond-resolved fluorescence studies of RB-ZnO nanohybrids demonstrate an efficient electron transfer from the photoexcited drug to the semiconductor NPs. Picosecond-resolved Förster resonance energy transfer from ZnO NPs to RB unravel the proximity of the drug to the semiconductor at the molecular level. The photoinduced ROS formation was monitored using a dichlorofluorescin oxidation assay, which is a conventional oxidative stress indicator. It is observed that the ROS generation under green light illumination is greater at low concentrations of RB-ZnO nanohybrids compared with free RB. Substantial photodynamic activity of the nanohybrids in bacterial and fungal cell lines validated the in vitro toxicity results. Furthermore, the cytotoxic effect of the nanohybrids in HeLa cells, which was monitored by MTT assay, is also noteworthy.


Scientific Reports | 2016

Allosteric Inhibitory Molecular Recognition of a Photochromic Dye by a Digestive Enzyme: Dihydroindolizine makes α-chymotrypsin Photo-responsive.

Damayanti Bagchi; Abhijit Ghosh; Priya Singh; Shreyasi Dutta; Nabarun Polley; Ismail I. Althagafi; Rabab S. Jassas; Saleh A. Ahmed; Samir Kumar Pal

The structural-functional regulation of enzymes by the administration of an external stimulus such as light could create photo-switches that exhibit unique biotechnological applications. However, molecular recognition of small ligands is a central phenomenon involved in all biological processes. We demonstrate herein that the molecular recognition of a photochromic ligand, dihydroindolizine (DHI), by serine protease α-chymotrypsin (CHT) leads to the photo-control of enzymatic activity. We synthesized and optically characterized the photochromic DHI. Light-induced reversible pyrroline ring opening and a consequent thermal back reaction via 1,5-electrocyclization are responsible for the photochromic behavior. Furthermore, DHI inhibits the enzymatic activity of CHT in a photo-controlled manner. Simultaneous binding of the well-known inhibitors 4-nitrophenyl anthranilate (NPA) or proflavin (PF) in the presence of DHI displays spectral overlap between the emission of CHT-NPA or CHT-PF with the respective absorption of cis or trans DHI. The results suggest an opportunity to explore the binding site of DHI using Förster resonance energy transfer (FRET). Moreover, to more specifically evaluate the DHI binding interactions, we employed molecular docking calculations, which suggested binding near the hydrophobic site of Cys-1-Cys-122 residues. Variations in the electrostatic interactions of the two conformers of DHI adopt unfavorable conformations, leading to the allosteric inhibition of enzymatic activity.


Future Science OA | 2016

Citrate functionalized Mn3O4 in nanotherapy of hepatic fibrosis by oral administration

Aniruddha Adhikari; Nabarun Polley; Soumendra Darbar; Damayanti Bagchi; Samir Kumar Pal

Aim: To test the potential of orally administered citrate functionalized Mn3O4 nanoparticles (C-Mn3O4 NPs) as a therapeutic agent against hepatic fibrosis and associated chronic liver diseases. Materials & methods: C-Mn3O4 NPs were synthesized and the pH dependent antioxidant mechanism was characterized by in vitro studies. CCl4 intoxicated mice were orally treated with C-Mn3O4 NPs to test its in vivo antioxidant and antifibrotic ability. Results: We demonstrated ultrahigh efficacy of the C-Mn3O4 NPs in treatment of chronic liver diseases such as hepatic fibrosis and cirrhosis in mice compared with conventional medicine silymarin without any toxicological implications. Conclusion: These findings may pave the way for practical clinical use of the NPs as safe medication of chronic liver diseases associated with fibrosis and cirrhosis in human subjects.


Colloids and Surfaces B: Biointerfaces | 2018

Photo-triggered destabilization of nanoscopic vehicles by dihydroindolizine for enhanced anticancer drug delivery in cervical carcinoma

Priya Singh; Susobhan Choudhury; Senthilguru Kulanthaivel; Damayanti Bagchi; Indranil Banerjee; Saleh A. Ahmed; Samir Kumar Pal

The efficacy and toxicity of drugs depend not only on their potency but also on their ability to reach the target sites in preference to non-target sites. In this regards destabilization of delivery vehicles induced by light can be an effective strategy for enhancing drug delivery with spatial and temporal control. Herein we demonstrate that the photoinduced isomerization from closed (hydrophobic) to open isomeric form (hydrophilic) of a novel DHI encapsulated in liposome leads to potential light-controlled drug delivery vehicles. We have used steady state and picosecond resolved dynamics of a drug 8-anilino-1-naphthalenesulfonic acid ammonium salt (ANS) incorporated in liposome to monitor the efficacy of destabilization of liposome in absence and presence UVA irradiation. Steady state and picosecond resolved polarization gated spectroscopy including the well-known strategy of solvation dynamics and Förster resonance energy transfer; reveal the possible mechanism out of various phenomena involved in destabilization of liposome. We have also investigated the therapeutic efficacy of doxorubicin (DOX) delivery from liposome to cervical cancer cell line HeLa. The FACS, confocal fluorescence microscopic and MTT assay studies reveal an enhanced cellular uptake of DOX leading to significant reduction in cell viability (∼40%) of HeLa followed by photoresponsive destabilization of liposome. Our studies successfully demonstrate that these DHI encapsulated liposomes have potential application as a smart photosensitive drug delivery system.


ACS Omega | 2017

Essential Dynamics of an Effective Phototherapeutic Drug in a Nanoscopic Delivery Vehicle: Psoralen in Ethosomes for Biofilm Treatment

Damayanti Bagchi; Shreyasi Dutta; Priya Singh; Siddhi Chaudhuri; Samir Kumar Pal

Appropriate localization of a drug and its structure/functional integrity in a delivery agent essentially dictates the efficacy of the vehicle and the medicinal activity of the drug. In the case of a phototherapeutic drug, its photoinduced dynamics becomes an added parameter. Here, we have explored the photoinduced dynamical events of a model phototherapeutic drug psoralen (PSO) in a potential delivery vehicle called an ethosome. Dynamic light scattering confirms the structural integrity of the ethosome vehicle after the encapsulation of PSO. Steady state and picosecond resolved polarization gated spectroscopy, including the well-known strategy of solvation and Förster resonance energy transfer, reveal the localization of the drug in the vehicle and the environment in the proximity of PSO. We have also investigated the efficacy of drug delivery to various individual bacteria (Gram-negative: Escherichia coli; Gram-positive: Staphylococcus aureus) and bacterial biofilms. Our optical and electron microscopic studies reveal a significant reduction in bacterial survival (∼70%) and the destruction of bacterial adherence following a change in the morphology of the biofilms after phototherapy. Our studies are expected to find relevance in the formulation of drug delivery agents in several skin diseases and biofilm formation in artificial implants.


Journal of Biosciences | 2018

Ultrafast dynamics-driven biomolecular recognition where fast activities dictate slow events

Priya Singh; Damayanti Bagchi; Samir Kumar Pal

In general, biological macromolecules require significant dynamical freedom to carry out their different functions, including signal transduction, metabolism, catalysis and gene regulation. Effectors (ligands, DNA and external milieu, etc) are considered to function in a purely dynamical manner by selectively stabilizing a specific dynamical state, thereby regulating biological function. In particular, proteins in presence of these effectors can exist in several dynamical states with distinct binding or enzymatic activity. Here, we have reviewed the efficacy of ultrafast fluorescence spectroscopy to monitor the dynamical flexibility of various proteins in presence of different effectors leading to their biological activity. Recent studies demonstrate the potency of a combined approach involving picosecond-resolved Förster resonance energy transfer, polarisation-gated fluorescence and time-dependent stokes shift for the exploration of ultrafast dynamics in biomolecular recognition of various protein molecules. The allosteric protein–protein recognition following differential protein–DNA interaction is shown to be a consequence of some ultrafast segmental motions at the C-terminal of Gal repressor protein dimer with DNA operator sequences OE and OI. Differential ultrafast dynamics at the C-terminal of λ-repressor protein with two different operator DNA sequences for the protein–protein interaction with different strengths is also reviewed. We have also systemically briefed the study on the role of ultrafast dynamics of water molecules on the functionality of enzyme proteins α-chymotrypsin and deoxyribonuclease I. The studies on the essential ultrafast dynamics at the active site of the enzyme α-chymotrypsin by using an anthraniloyl fluorescent extrinsic probe covalently attached to the serine-195 residue for the enzymatic activity at homeothermic condition has also been reviewed. Finally, we have highlighted the evidence that a photoinduced dynamical event dictates the molecular recognition of a photochromic ligand, dihydroindolizine with the serine protease α-chymotrypsin and with a liposome (L-α-phosphatidylcholine).


ACS Omega | 2018

NIR-Light-Active ZnO-Based Nanohybrids for Bacterial Biofilm Treatment

Damayanti Bagchi; V.S. Sharan Rathnam; Peter Lemmens; Indranil Banerjee; Samir Kumar Pal

Nanomaterials with antimicrobial properties triggered by external stimuli appear to be a promising and innovative substitute for the destruction of antibiotic-resistant superbugs as they can induce multiple disruptions in the cellular mechanism. This study demonstrates the use of squaraine (SQ) dye as the photosensitive material, activated in the near-infrared tissue-transparent therapeutic window. The dye has been covalently attached to the ZnO nanoparticle surface, forming ZnO-SQ nanohybrids. The formation of the nanohybrids is confirmed using Fourier transform infrared and other optical spectroscopic methods. The photoinduced interfacial electron transfer process (as confirmed using the time-resolved fluorescence technique) from the excited state of SQ to the conduction band of ZnO is responsible for the greater reactive oxygen species (ROS) generation ability of the nanohybrid. The production of photoactivated ROS (especially singlet oxygen species) by ZnO-SQ provides remarkable antimicrobial action against clinically significant Staphylococcus aureus. Detailed investigations suggest synergistic involvement of cell membrane disruption and nanoparticle internalization followed by photoinduced intracellular ROS generation, which result in an unprecedented 95% bacterial killing activity by the nanohybrid. Moreover, the efficacy of the nanohybrid for disruption of bacterial biofilms has been examined. The electron microscopic images suggest significant bacterial cell death following structural alteration and reduced adherence property of the biofilms. Nanodimension-driven greater internalization of ZnO-SQ followed by an improved dissolution of ZnO in an acidic environment of the biofilm as well as red-light-driven interfacial charge separation and ROS generation improves the efficacy of the material for biofilm destruction. An artificial medical implant mimicking titanium sheets coated with ZnO-SQ depicts light-triggered disruption in the adherence property of matured biofilms. The cytotoxicity and hemolysis assays show inherent biocompatibility of the photoactive nanohybrid. This study is notably promising for the treatment of life-threatening drug-resistant infections and eradication of biofilms formed within artificial implants.


Journal of Photochemistry and Photobiology A-chemistry | 2017

Enhanced charge separation through modulation of defect-state in wide band-gap semiconductor for potential photocatalysis application: Ultrafast spectroscopy and computational studies

Tuhin Kumar Maji; Damayanti Bagchi; Prasenjit Kar; Debjani Karmakar; Samir Kumar Pal

Collaboration


Dive into the Damayanti Bagchi's collaboration.

Top Co-Authors

Avatar

Samir Kumar Pal

S.N. Bose National Centre for Basic Sciences

View shared research outputs
Top Co-Authors

Avatar

Peter Lemmens

Braunschweig University of Technology

View shared research outputs
Top Co-Authors

Avatar

Priya Singh

S.N. Bose National Centre for Basic Sciences

View shared research outputs
Top Co-Authors

Avatar

Samim Sardar

S.N. Bose National Centre for Basic Sciences

View shared research outputs
Top Co-Authors

Avatar

Siddhi Chaudhuri

S.N. Bose National Centre for Basic Sciences

View shared research outputs
Top Co-Authors

Avatar

Nabarun Polley

S.N. Bose National Centre for Basic Sciences

View shared research outputs
Top Co-Authors

Avatar

Shreyasi Dutta

S.N. Bose National Centre for Basic Sciences

View shared research outputs
Top Co-Authors

Avatar

Debjani Karmakar

Bhabha Atomic Research Centre

View shared research outputs
Top Co-Authors

Avatar

Susobhan Choudhury

S.N. Bose National Centre for Basic Sciences

View shared research outputs
Top Co-Authors

Avatar

Tuhin Kumar Maji

S.N. Bose National Centre for Basic Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge