Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Samim Sardar is active.

Publication


Featured researches published by Samim Sardar.


Beilstein Journal of Nanotechnology | 2013

Modulation of defect-mediated energy transfer from ZnO nanoparticles for the photocatalytic degradation of bilirubin

Tanujjal Bora; Karthik Lakshman; Soumik Sarkar; Abhinandan Makhal; Samim Sardar; Samir Kumar Pal; Joydeep Dutta

Summary In recent years, nanotechnology has gained significant interest for applications in the medical field. In this regard, a utilization of the ZnO nanoparticles for the efficient degradation of bilirubin (BR) through photocatalysis was explored. BR is a water insoluble byproduct of the heme catabolism that can cause jaundice when its excretion is impaired. The photocatalytic degradation of BR activated by ZnO nanoparticles through a non-radiative energy transfer pathway can be influenced by the surface defect-states (mainly the oxygen vacancies) of the catalyst nanoparticles. These were modulated by applying a simple annealing in an oxygen-rich atmosphere. The mechanism of the energy transfer process between the ZnO nanoparticles and the BR molecules adsorbed at the surface was studied by using steady-state and picosecond-resolved fluorescence spectroscopy. A correlation of photocatalytic degradation and time-correlated single photon counting studies revealed that the defect-engineered ZnO nanoparticles that were obtained through post-annealing treatments led to an efficient decomposition of BR molecules that was enabled by Förster resonance energy transfer.


Journal of Materials Chemistry | 2015

Facile synthesis of Pd nanostructures in hexagonal mesophases as a promising electrocatalyst for ethanol oxidation

Srabanti Ghosh; Hynd Remita; Prasenjit Kar; Susobhan Choudhury; Samim Sardar; Patricia Beaunier; Partha Sarathi Roy; Swapan Bhattacharya; Samir Kumar Pal

One of the significant challenges for the commercialization of direct ethanol fuel cells (DEFCs) is the preparation of active, robust, and low-cost catalysts. In this work, a facile and reproducible method is demonstrated for the synthesis of Pd assembled nanostructures in a hexagonal mesophase formed by a quaternary system (Pd-doped water, surfactant, oil, and cosurfactant) via photoirradiation. The formation of Pd nanostructures in the confined region of hexagonal mesophases was further supported by water relaxation dynamics study using a solvation probe. The mesophases can be doped with high concentrations of a palladium salt (0.1 M) without any disturbance to the structure of the mesophases which results in a high yield and facilitates the clean synthesis of Pd nanostructures without using any toxic chemicals. Electrochemical measurement confirms that the as-prepared catalysts exhibit significant electrocatalytic activity for ethanol oxidation in alkaline solution. Additionally, we present an alternative strategy using reduced graphene oxide nanosheets in combination with Nafion (a proton conducting phase) as a support, revealing the pronounced impact on dramatically enhanced electrocatalytic activity and stability of Pd nanostructures compared to Nafion alone. This unique combination allowed the effective dispersion of the Pd nanostructures that is responsible for the enhancement of the catalytic activity. Our approach paves the way towards the rational design of practically relevant catalysts with both enhanced activity and durability for fuel cell applications.


Physical Chemistry Chemical Physics | 2013

Role of central metal ions in hematoporphyrin-functionalized titania in solar energy conversion dynamics

Samim Sardar; Soumik Sarkar; Myo Tay Zar Myint; Salim H. Al-Harthi; Joydeep Dutta; Samir Kumar Pal

In this study, we have investigated the efficacy of electron transfer processes in hematoporphyrin (HP) and iron hematoporphyrin ((Fe)HP) sensitized titania as potential materials for capturing and storing solar energy. Steady-state and picosecond-resolved fluorescence studies show the efficient photoinduced electron transfer processes in hematoporphyrin-TiO2 (HP-TiO2) and Fe(III)-hematoporphyrin-TiO2 (Fe(III)HP-TiO2) nanohybrids, which reveal the role of central metal ions in electron transfer processes. The bidentate covalent attachment of HP onto TiO2 particulates is confirmed by FTIR, Raman scattering and X-ray photoelectron spectroscopy (XPS) studies. The iron oxidation states and the attachment of iron to porphyrin through pyrrole nitrogen atoms were investigated by cyclic voltammetry and FTIR studies, respectively. We also investigated the potential application of HP-TiO2 and Fe(III)HP-TiO2 nanohybrids for the photodegradation of a model organic pollutant methylene blue (MB) in aqueous solution under wavelength dependent light irradiation. To further investigate the role of iron oxidation states in electron transfer processes, photocurrent measurements were done by using Fe(III) and Fe(II) ions in porphyrin. This work demonstrates the role of central metal ions in fundamental electron transfer processes in porphyrin sensitized titania and their implications for dye-sensitized device performance.


Catalysis Science & Technology | 2016

Microwave-assisted synthesis of porous Mn2O3 nanoballs as bifunctional electrocatalyst for oxygen reduction and evolution reaction

Srabanti Ghosh; Prasenjit Kar; Nimai Bhandary; Suddhasatwa Basu; Samim Sardar; T. Maiyalagan; Dipanwita Majumdar; Swapan Bhattacharya; Asim Bhaumik; Peter Lemmens; Samir Kumar Pal

Technological hurdles that still prevent the commercialization of fuel cell technologies necessitate designing low-cost, efficient and non-precious metals. These could serve as alternatives to high-cost Pt-based materials. Herein, a facile and effective microwave-assisted route has been developed to synthesize structurally uniform and electrochemically active pure and transition metal-doped manganese oxide nanoballs (Mn2O3 NBs) for fuel cell applications. The average diameter of pure and doped Mn2O3 NBs was found to be ~610 nm and ~650 nm, respectively, as estimated using transmission electron microscopy (TEM). The nanoparticles possess a good degree of crystallinity as evident from the lattice fringes in high-resolution transmission electron microscopy (HRTEM). The cubic crystal phase was ascertained using X-ray diffraction (XRD). The energy dispersive spectroscopic (EDS) elemental mapping confirms the formation of copper-doped Mn2O3 NBs. The experimental parameter using trioctylphosphine oxide (TOPO) as the chelating agent to control the nanostructure growth has been adequately addressed using scanning electron microscopy (SEM). The solid NBs were formed by the self-assembly of very small Mn2O3 nanoparticles as evident from the SEM image. Moreover, the concentration of TOPO was found to be the key factor whose subtle variation can effectively control the size of the as-prepared Mn2O3 NBs. The cyclic voltammetry and galvanostatic charge/discharge studies demonstrated enhanced electrochemical performance for copper-doped Mn2O3 NBs which is supported by a 5.2 times higher electrochemically active surface area (EASA) in comparison with pure Mn2O3 NBs. Electrochemical investigations indicate that both pure and copper-doped Mn2O3 NBs exhibit a bifunctional catalytic activity toward the four-electron electrochemical reduction as well the evolution of oxygen in alkaline media. Copper doping in Mn2O3 NBs revealed its pronounced impact on the electrocatalytic activity with a high current density for the electrochemical oxygen reduction and evolution reaction. The synthetic approach provides a general platform for fabricating well-defined porous metal oxide nanostructures with prospective applications as low-cost catalysts for alkaline fuel cells.


Scientific Reports | 2015

Enhanced Charge Separation and FRET at Heterojunctions between Semiconductor Nanoparticles and Conducting Polymer Nanofibers for Efficient Solar Light Harvesting

Samim Sardar; Prasenjit Kar; Hynd Remita; Bo Liu; Peter Lemmens; Samir Kumar Pal; Srabanti Ghosh

Energy harvesting from solar light employing nanostructured materials offer an economic way to resolve energy and environmental issues. We have developed an efficient light harvesting heterostructure based on poly(diphenylbutadiyne) (PDPB) nanofibers and ZnO nanoparticles (NPs) via a solution phase synthetic route. ZnO NPs (~20 nm) were homogeneously loaded onto the PDPB nanofibers as evident from several analytical and spectroscopic techniques. The photoinduced electron transfer from PDPB nanofibers to ZnO NPs has been confirmed by steady state and picosecond-resolved photoluminescence studies. The co-sensitization for multiple photon harvesting (with different energies) at the heterojunction has been achieved via a systematic extension of conjugation from monomeric to polymeric diphenyl butadiyne moiety in the proximity of the ZnO NPs. On the other hand, energy transfer from the surface defects of ZnO NPs (~5 nm) to PDPB nanofibers through Förster Resonance Energy Transfer (FRET) confirms the close proximity with molecular resolution. The manifestation of efficient charge separation has been realized with ~5 fold increase in photocatalytic degradation of organic pollutants in comparison to polymer nanofibers counterpart under visible light irradiation. Our results provide a novel approach for the development of nanoheterojunctions for efficient light harvesting which will be helpful in designing future solar devices.


Journal of Materials Chemistry C | 2015

Nano surface engineering of Mn2O3 for potential light-harvesting application

Prasenjit Kar; Samim Sardar; Srabanti Ghosh; Manas R. Parida; Bo Liu; Omar F. Mohammed; Peter Lemmens; Samir Kumar Pal

Manganese oxides are well known applied materials including their use as efficient catalysts for various environmental applications. Multiple oxidation states and their change due to various experimental conditions are concluded to be responsible for their multifaceted functionality. Here we demonstrate that the interaction of a small organic ligand with one of the oxide varieties induces completely new optical properties and functionalities (photocatalysis). We have synthesized Mn2O3 microspheres via a hydrothermal route and characterized them using scanning electron microscopy (SEM), X-ray diffraction (XRD) and elemental mapping (EDAX). When the microspheres are allowed to interact with the biologically important small ligand citrate, nanometer-sized surface functionalized Mn2O3 (NPs) are formed. Raman and Fourier transformed infrared spectroscopy confirm the covalent attachment of the citrate ligand to the dangling bond of Mn at the material surface. While cyclic voltammetry (CV) and X-ray photoelectron spectroscopy (XPS) analysis confirm multiple surface charge states after the citrate functionalization of the Mn2O3 NPs, new optical properties of the surface engineered nanomaterials in terms of absorption and emission emerge consequently. The engineered material offers a novel photocatalytic functionality to the model water contaminant methylene blue (MB). The effect of doping other metal ions including Fe3+ and Cu2+ on the optical and catalytic properties is also investigated. In order to prepare a prototype for potential environmental application of water decontamination, we have synthesized and duly functionalized the material on the extended surface of a stainless steel metal mesh (size 2 cm × 1.5 cm, pore size 150 μm × 200 μm). We demonstrate that the functionalized mesh always works as a “physical” filter of suspended particulates. However, it works as a “chemical” filter (photocatalyst) for the potential water soluble contaminant (MB) in the presence of solar light.


Chemistry: A European Journal | 2014

Impact of Metal Ions in Porphyrin-Based Applied Materials for Visible-Light Photocatalysis: Key Information from Ultrafast Electronic Spectroscopy

Prasenjit Kar; Samim Sardar; Erkki Alarousu; Jingya Sun; Zaki S. Seddigi; Saleh A. Ahmed; Ekram Y. Danish; Omar F. Mohammed; Samir Kumar Pal

Protoporphyrin IX-zinc oxide (PP-ZnO) nanohybrids have been synthesized for applications in photocatalytic devices. High-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and steady-state infrared, absorption, and emission spectroscopies have been used to analyze the structural details and optical properties of these nanohybrids. Time-resolved fluorescence and transient absorption techniques have been applied to study the ultrafast dynamic events that are key to photocatalytic activities. The photocatalytic efficiency under visible-light irradiation in the presence of naturally abundant iron(III) and copper(II) ions has been found to be significantly retarded in the former case, but enhanced in the latter case. More importantly, femtosecond (fs) transient absorption data have clearly demonstrated that the residence of photoexcited electrons from the sensitizer PP in the centrally located iron moiety hinders ground-state bleach recovery of the sensitizer, affecting the overall photocatalytic rate of the nanohybrid. The presence of copper(II) ions, on the other hand, offers additional stability against photobleaching and eventually enhances the efficiency of photocatalysis. In addition, we have also explored the role of UV light in the efficiency of photocatalysis and have rationalized our observations from femtosecond- to picosecond-resolved studies.


Science and Technology of Advanced Materials | 2016

Facile synthesis of reduced graphene oxide–gold nanohybrid for potential use in industrial waste-water treatment

Prasenjit Kar; Samim Sardar; Bo Liu; Monjoy Sreemany; Peter Lemmens; Srabanti Ghosh; Samir Kumar Pal

Abstract Here, we report a facile approach, by the photochemical reduction technique, for in situ synthesis of Au-reduced graphene oxide (Au-RGO) nanohybrids, which demonstrate excellent adsorption capacities and recyclability for a broad range of dyes. High-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) data confirm the successful synthesis of Au-RGO nanohybrids. The effect of several experimental parameters (temperature and pH) variation can effectively control the dye adsorption capability. Furthermore, kinetic adsorption data reveal that the adsorption process follows a pseudo second-order model. The negative value of Gibbs free energy (ΔG0) confirms spontaneity while the positive enthalpy (ΔH0) indicates the endothermic nature of the adsorption process. Picosecond resolved fluorescence technique unravels the excited state dynamical processes of dye molecules adsorbed on the Au-RGO surface. Time resolved fluorescence quenching of Rh123 after adsorption on Au-RGO nanohybrids indicates efficient energy transfer from Rh123 to Au nanoparticles. A prototype device has been fabricated using Au-RGO nanohybrids on a syringe filter (pore size: 0.220 μm) and the experimental data indicate efficient removal of dyes from waste water with high recyclability. The application of this nanohybrid may lead to the development of an efficient reusable adsorbent in portable water purification.


RSC Advances | 2015

Modulation of stability and functionality of a phyto-antioxidant by weakly interacting metal ions: curcumin in aqueous solution

Damayanti Bagchi; Siddhi Chaudhuri; Samim Sardar; Susobhan Choudhury; Nabarun Polley; Peter Lemmens; Samir Kumar Pal

The natural polyphenol curcumin and its metal coordinated complexes show obvious benefits in the medical therapies of cancer and several neurodegenerative diseases. On the other side their stability and bioavailability are critical issues. The present study is an attempt to address the stability and functionality of curcumin upon complexation with transition metal ions. We have synthesized and optically characterized metallo–curcumin complexes with Cu(II) and Zn(II). From femtosecond resolved upconversion studies an interaction at the molecular level is revealed based on an observed photoinduced electron transfer from curcumin to the metal ions. In order to investigate the antioxidant activity of the complexes, we have performed a 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay in dark. The Cu(II)–curcumin complex exhibits an enhanced and recyclable activity, more pronounced compared to that of the Zn(II)–curcumin complex, which can be attributed to the weaker O–H bond present in the former case. In contrast, the Zn(II) complex has a higher solubility and stability in aqueous media than the Cu(II) complex. To address stability vs. functionality issues, we have suggested a facile method that enhances the solubility and stability of curcumin in aqueous media by metalation with Zn(II) and a successional replacement of Zn(II) in the complex by Cu(II) through a simple route to enhance the activity prior to its use. We have also used the complex in a model anti-bacteriological assay experiment where it shows significantly higher activity compared to pure curcumin. The dichlorofluorescin (DCFH) oxidation indicates an enhancement in ROS generation, which in turn is responsible for the enhanced antioxidative property of the Cu(II)–curcumin complex. Our results provide a promising method to use metallo–curcumin complexes in diverse biological applications.


Journal of Physical Chemistry A | 2015

Sensitization of an Endogenous Photosensitizer: Electronic Spectroscopy of Riboflavin in the Proximity of Semiconductor, Insulator, and Metal Nanoparticles

Siddhi Chaudhuri; Samim Sardar; Damayanti Bagchi; Shib Shankar Singha; Peter Lemmens; Samir Kumar Pal

Riboflavin (Rf) is a class of important vitamins (Vitamin B2) and a well-known antioxidant. Here we have synthesized nanohybrids of Rf with a number of inorganic nanoparticles (NPs); namely zinc oxide (ZnO), titanium oxide (TiO2), aluminum oxide (Al2O3) and gold NPs of similar sizes. While high resolution transmission electron microscopy (HRTEM) confirms integrity and sizes of the NPs, intactness of the molecular structure of the drug Rf is revealed from absorption and steady-state emission spectra of the drug in the nanohybrid. Raman spectroscopy on the nanohybrids shows the nature of molecular complexation of the drug with the inorganic NPs. For the semiconductor and insulator NPs, the complexation is found to be noncovalent, however, a covalent attachment of the drug with the dangling bonds of metal atoms at the surface is observed. In order to investigate antioxidant activity of the nanohybrids, we have performed 2, 2-diphenyl-1-picrylhydrazyl (DPPH) assay of the nanohybrids in dark as well as under blue light irradiation. Whereas change of the antioxidant activity of the nanohybrids with respect to free riboflavin in the absence of light is observed to be insignificant, a drastic change in the activity in the case of TiO2 and ZnO in the presence of light is evident. No change in the case of Al2O3 and a significant decrease in the antioxidant activity for gold nanohybrids are also remarkable. Picosecond-resolved fluorescence studies on the nanohybrids reveal a molecular picture of the differential antioxidant activities. An ultrafast photoinduced electron transfer from Rf to ZnO and TiO2 are clearly evident from the corresponding fluorescence transients. We have compared the picosecond-resolved transients with that of Rf in the presence of a well-known electron acceptor benzoquinone (BQ) and found similar time scales. No temporal change in the fluorescence transient of riboflavin in Al2O3 nanohybrids compared to that of free Rf is observed indicating uneventful excited state relaxation of the nanohybrids. Nanosurface energy transfer (NSET) over Förster resonance energy transfer (FRET) is found to be the prevailing de-excitation mechanism in the case of gold nanohybrids, because of the strong spectral overlap between Rf emission and surface plasmon absorption of the gold NPs. Different excited state mechanisms as revealed from our studies are expected to be useful for the design of NP-sensitized drugs, which are reported sparsely in the literature.

Collaboration


Dive into the Samim Sardar's collaboration.

Top Co-Authors

Avatar

Samir Kumar Pal

S.N. Bose National Centre for Basic Sciences

View shared research outputs
Top Co-Authors

Avatar

Peter Lemmens

Braunschweig University of Technology

View shared research outputs
Top Co-Authors

Avatar

Prasenjit Kar

S.N. Bose National Centre for Basic Sciences

View shared research outputs
Top Co-Authors

Avatar

Srabanti Ghosh

Central Glass and Ceramic Research Institute

View shared research outputs
Top Co-Authors

Avatar

Bo Liu

Braunschweig University of Technology

View shared research outputs
Top Co-Authors

Avatar

Soumik Sarkar

S.N. Bose National Centre for Basic Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Damayanti Bagchi

S.N. Bose National Centre for Basic Sciences

View shared research outputs
Top Co-Authors

Avatar

Siddhi Chaudhuri

S.N. Bose National Centre for Basic Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge