Damian S. Shin
Albany Medical College
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Damian S. Shin.
Experimental Neurology | 2010
Clement Hamani; Francisco Paulino Dubiela; Juliana Carlota Kramer Soares; Damian S. Shin; Simone Bittencourt; Lucience Covolan; Peter L. Carlen; Adrian W. Laxton; Mojgan Hodaie; Scellig Stone; Yoon Ha; William D. Hutchison; Andres M. Lozano; Luiz E. Mello; Maria Gabriela Menezes Oliveira
Deep brain stimulation (DBS) of the anterior thalamic nucleus (AN), an important relay in the circuitry of memory, is currently being proposed as a treatment for epilepsy. Despite the encouraging results with the use of this therapy, potential benefits and adverse effects are yet to be determined. We show that AN stimulation at relatively high current disrupted the acquisition of contextual fear conditioning and impaired performance on a spatial alternating task in rats. This has not been observed at parameters generating a charge density that approximated the one used in clinical practice. At settings that impaired behavior, AN stimulation induced a functional depolarization block nearby the electrode, increased c-Fos expression in cerebral regions projecting to and receiving projections from the AN, and influenced hippocampal activity. This suggests that complex mechanisms might be involved in the effects of AN DBS, including a local target inactivation and the modulation of structures at a distance. Though translating data from animals to humans has to be considered with caution, our study underscores the need for carefully monitoring memory function while selecting stimulation parameters during the clinical evaluation of AN DBS.
The Journal of Neuroscience | 2012
Zhang J. Zhang; Julius Koifman; Damian S. Shin; Hui Ye; Carlos M. Florez; Liang Zhang; Taufik A. Valiante; Peter L. Carlen
How the brain transitions into a seizure is poorly understood. Recurrent seizure-like events (SLEs) in low-Mg2+/high-K+ perfusate were measured in the CA3 region of the intact mouse hippocampus. The SLE was divided into a “preictal phase,” which abruptly turns into a higher frequency “ictal” phase. Blockade of GABAA receptors shortened the preictal phase, abolished interictal bursts, and attenuated the slow preictal depolarization, with no effect on the ictal duration, whereas SLEs were blocked by glutamate receptor blockade. In CA3 pyramidal cells and stratum oriens non-fast-spiking and fast-spiking interneurons, recurrent GABAergic IPSCs predominated interictally and during the early preictal phase, synchronous with extracellularly measured recurrent field potentials (FPs). These IPSCs then decreased to zero or reversed polarity by the onset of the higher-frequency ictus. However, postsynaptic muscimol-evoked GABAA responses remained intact. Simultaneously, EPSCs synchronous with the FPs markedly increased to a maximum at the ictal onset. The reversal potential of the compound postsynaptic currents (combined simultaneous EPSCs and IPSCs) became markedly depolarized during the preictal phase, whereas the muscimol-evoked GABAA reversal potential remained unchanged. During the late preictal phase, interneuronal excitability was high, but IPSCs, evoked by local stimulation, or osmotically by hypertonic sucrose application, were diminished, disappearing at the ictal onset. We conclude that the interictal and early preictal states are dominated by GABAergic activity, with the onset of the ictus heralded by exhaustion of presynaptic release of GABA, and unopposed increased glutamatergic responses.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Matthew E. Pamenter; David W. Hogg; Jake Ormond; Damian S. Shin; Melanie A. Woodin; Leslie Thomas Buck
Anoxic insults cause hyperexcitability and cell death in mammalian neurons. Conversely, in anoxia-tolerant turtle brain, spontaneous electrical activity is suppressed by anoxia (i.e., spike arrest; SA) and cell death does not occur. The mechanism(s) of SA is unknown but likely involves GABAergic synaptic transmission, because GABA concentration increases dramatically in anoxic turtle brain. We investigated this possibility in turtle cortical neurons exposed to anoxia and/or GABAA/B receptor (GABAR) modulators. Anoxia increased endogenous slow phasic GABAergic activity, and both anoxia and GABA reversibly induced SA by increasing GABAAR-mediated postsynaptic activity and Cl− conductance, which eliminated the Cl− driving force by depolarizing membrane potential (∼8 mV) to GABA receptor reversal potential (∼−81 mV), and dampened excitatory potentials via shunting inhibition. In addition, both anoxia and GABA decreased excitatory postsynaptic activity, likely via GABABR-mediated inhibition of presynaptic glutamate release. In combination, these mechanisms increased the stimulation required to elicit an action potential >20-fold, and excitatory activity decreased >70% despite membrane potential depolarization. In contrast, anoxic neurons cotreated with GABAA+BR antagonists underwent seizure-like events, deleterious Ca2+ influx, and cell death, a phenotype consistent with excitotoxic cell death in anoxic mammalian brain. We conclude that increased endogenous GABA release during anoxia mediates SA by activating an inhibitory postsynaptic shunt and inhibiting presynaptic glutamate release. This represents a natural adaptive mechanism in which to explore strategies to protect mammalian brain from low-oxygen insults.
Neuropsychopharmacology | 2013
Abhiram Pushparaj; Clement Hamani; Wilson Yu; Damian S. Shin; Bin Kang; José N. Nobrega; Bernard Le Foll
Pharmacological inactivation of the granular insular cortex is able to block nicotine-taking and -seeking behaviors in rats. In this study, we explored the potential of modulating activity in the insular region using electrical stimulation. Animals were trained to self-administer nicotine (0.03 mg/kg per infusion) under a fixed ratio-5 (FR-5) schedule of reinforcement followed by a progressive ratio (PR) schedule. Evaluation of the effect of stimulation in the insular region was performed on nicotine self-administration under FR-5 and PR schedules, as well on reinstatement of nicotine-seeking behavior induced by nicotine-associated cues or nicotine-priming injections. The effect of stimulation was also examined in brain slices containing insular neurons. Stimulation significantly attenuated nicotine-taking, under both schedules of reinforcement, as well as nicotine-seeking behavior induced by cues and priming. These effects appear to be specific to nicotine-associated behaviors, as stimulation did not have any effect on food-taking behavior. They appear to be anatomically specific, as stimulation surrounding the insular region had no effect on behavior. Stimulation of brain slices containing the insular region was found to inactivate insular neurons. Our results suggest that deep brain stimulation to modulate insular activity should be further explored.
Journal of Neurophysiology | 2013
Alexander C. Sutton; Wilson Yu; Megan Calos; Autumn B. Smith; Adolfo Ramirez-Zamora; Eric Molho; Julie G. Pilitsis; Jonathan M. Brotchie; Damian S. Shin
Deep brain stimulation (DBS) employing high-frequency stimulation (HFS) is commonly used in the globus pallidus interna (GPi) and the subthalamic nucleus (STN) for treating motor symptoms of patients with Parkinsons disease (PD). Although DBS improves motor function in most PD patients, disease progression and stimulation-induced nonmotor complications limit DBS in these areas. In this study, we assessed whether stimulation of the substantia nigra pars reticulata (SNr) improved motor function. Hemiparkinsonian rats predominantly touched with their unimpaired forepaw >90% of the time in the stepping and limb-use asymmetry tests. After SNr-HFS (150 Hz), rats touched equally with both forepaws, similar to naive and sham-lesioned rats. In vivo, SNr-HFS decreased beta oscillations (12-30 Hz) in the SNr of freely moving hemiparkinsonian rats and decreased SNr neuronal spiking activity from 28 ± 1.9 Hz before stimulation to 0.8 ± 1.9 Hz during DBS in anesthetized animals; also, neuronal spiking activity increased from 7 ± 1.6 to 18 ± 1.6 Hz in the ventromedial portion of the thalamus (VM), the primary SNr efferent. In addition, HFS of the SNr in brain slices from normal and reserpine-treated rat pups resulted in a depolarization block of SNr neuronal activity. We demonstrate improvement of forelimb akinesia with SNr-HFS and suggest that this motor effect may have resulted from the attenuation of SNr neuronal activity, decreased SNr beta oscillations, and increased activity of VM thalamic neurons, suggesting that the SNr may be a plausible DBS target for treating motor symptoms of DBS.
Neuroscience | 2012
Xiaoxing Huang; John McMahon; Jun Yang; Damian S. Shin; Yunfei Huang
Seizure susceptibility to neurological insults, including chemical convulsants, is age-dependent and most likely reflective of overall differences in brain excitability. The molecular and cellular mechanisms underlying development-dependent seizure susceptibility remain to be fully understood. Because the mammalian target of rapamycin (mTOR) pathway regulates neurite outgrowth, synaptic plasticity and cell survival, thereby influencing brain development, we tested if exposure of the immature brain to the mTOR inhibitor rapamycin changes seizure susceptibility to neurological insults. We found that inhibition of mTOR by rapamycin in immature rats (3-4 weeks old) increases the severity of seizures induced by pilocarpine, including lengthening the total seizure duration and reducing the latency to the onset of seizures. Rapamycin also reduces the minimal dose of pentylenetetrazol (PTZ) necessary to induce clonic seizures. However, in mature rats, rapamycin does not significantly change the seizure sensitivity to pilocarpine and PTZ. Likewise, kainate sensitivity was not significantly affected by rapamycin treatment in either mature or immature rats. Additionally, rapamycin treatment down-regulates the expression of potassium-chloride cotransporter 2 (KCC2) in the thalamus and to a lesser degree in the hippocampus. Pharmacological inhibition of thalamic mTOR or KCC2 increases susceptibility to pilocarpine-induced seizure in immature rats. Thus, our study suggests a role for the mTOR pathway in age-dependent seizure susceptibility.
Epilepsia | 2011
Damian S. Shin; Wilson Yu; Alexander C. Sutton; Megan Calos; Ernest Puil; Peter L. Carlen
Purpose: We investigated whether RS‐isovaline, a unique amino acid found in carbonaceous meteorites and presumed extraterrestrial, has anticonvulsant properties in rat hippocampal slices in vitro.
Neurobiology of Disease | 2015
John McMahon; Wilson Yu; Jun Yang; Haihua Feng; Meghan Helm; Elizabeth McMahon; Xinjun Zhu; Damian S. Shin; Yunfei Huang
Epilepsy and autism spectrum disorder (ASD) are common comorbidities of one another. Despite the prevalent correlation between the two disorders, few studies have been able to elucidate a mechanistic link. We demonstrate that forebrain specific Tsc1 deletion in mice causes epilepsy and autism-like behaviors, concomitant with disruption of 5-HT neurotransmission. We find that epileptiform activity propagates to the raphe nuclei, resulting in seizure-dependent hyperactivation of mTOR in 5-HT neurons. To dissect whether mTOR hyperactivity in 5-HT neurons alone was sufficient to recapitulate an autism-like phenotype we utilized Tsc1flox/flox;Slc6a4-cre mice, in which mTOR is restrictively hyperactivated in 5-HT neurons. Tsc1flox/flox;Slc6a4-cre mice displayed alterations of the 5-HT system and autism-like behaviors, without causing epilepsy. Rapamycin treatment in these mice was sufficient to rescue the phenotype. We conclude that the spread of seizure activity to the brainstem is capable of promoting hyperactivation of mTOR in the raphe nuclei, which in turn promotes autism-like behaviors. Thus our study provides a novel mechanism describing how epilepsy can contribute to the development of autism-like behaviors, suggesting new therapeutic strategies for autism.
European Journal of Neuroscience | 2015
Lucy Gee; Nita Chen; Adolfo Ramirez-Zamora; Damian S. Shin; Julie G. Pilitsis
Chronic pain is a major complaint for up to 85% of Parkinsons disease patients; however, it often not identified as a symptom of Parkinsons disease. Adequate treatment of motor symptoms often provides analgesic effects in Parkinsons patients but how this occurs remains unclear. Studies have shown both Parkinsons patients and 6‐hydroxydopamine‐lesioned rats exhibit decreased sensory thresholds. In humans, some show improvements in these deficits after subthalamic deep brain stimulation, while others report no change. Differing methods of testing and response criteria may explain these varying results. We examined this effect in 6‐hydroxydopamine‐lesioned rats. Sprague–Dawley rats were unilaterally implanted with subthalamic stimulating electrodes in the lesioned right hemisphere and sensory thresholds were tested using von Frey, tail‐flick and hot‐plate tests. Tests were done during and off subthalamic stimulation at 50 and 150 Hz to assess its effects on sensory thresholds. The 6‐hydroxydopamine‐lesioned animals exhibited lower mechanical (left paw, P < 0.01) and thermal thresholds than shams (hot plate, P < 0.05). Both 50 and 150 Hz increased mechanical (left paw; P < 0.01) and thermal thresholds in 6‐hydroxydopamine‐lesioned rats (hot‐plate test: 150 Hz, P < 0.05, 50 Hz, P < 0.01). Interestingly, during von Frey testing, low‐frequency stimulation provided a more robust improvement in some 6OHDA lesioned rats, while in others, the magnitude of improvement on high‐frequency stimulation was greater. This study shows that subthalamic deep brain stimulation improves mechanical allodynia and thermal hyperalgesia in 6‐hydroxydopamine‐lesioned animals at both high and low frequencies. Furthermore, we suggest considering using low‐frequency stimulation when treating Parkinsons patients where pain remains the predominant complaint.
Epilepsy Research | 2014
Wilson Yu; Autumn B. Smith; Julie G. Pilitsis; Damian S. Shin
Epilepsy is the most common neurological disorder in the world and although there are various treatment options available, 30% of patients remain intractable. Current antiepileptic drugs (AEDs) provide efficacy primarily by decreasing excitation or increasing inhibition in the seizing brain. Isovaline, a unique amino acid, was shown to attenuate seizure-like events (SLEs) in two in vitro hippocampal seizure models by selectively increasing the activity of interneurons, but not pyramidal neurons. Here, we demonstrate that 4-aminopyridine (4-AP) induced hippocampal epileptiform activity in vivo and seizing behavior, which were attenuated with intravenous (IV) isovaline treatment. We are the first to demonstrate that isovaline has potential as an AED and a conceptual framework for managing epilepsy could revolve around its novel mechanism of action.