Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wilson Yu is active.

Publication


Featured researches published by Wilson Yu.


Neuropsychopharmacology | 2013

Electrical Stimulation of the Insular Region Attenuates Nicotine-Taking and Nicotine-Seeking Behaviors

Abhiram Pushparaj; Clement Hamani; Wilson Yu; Damian S. Shin; Bin Kang; José N. Nobrega; Bernard Le Foll

Pharmacological inactivation of the granular insular cortex is able to block nicotine-taking and -seeking behaviors in rats. In this study, we explored the potential of modulating activity in the insular region using electrical stimulation. Animals were trained to self-administer nicotine (0.03 mg/kg per infusion) under a fixed ratio-5 (FR-5) schedule of reinforcement followed by a progressive ratio (PR) schedule. Evaluation of the effect of stimulation in the insular region was performed on nicotine self-administration under FR-5 and PR schedules, as well on reinstatement of nicotine-seeking behavior induced by nicotine-associated cues or nicotine-priming injections. The effect of stimulation was also examined in brain slices containing insular neurons. Stimulation significantly attenuated nicotine-taking, under both schedules of reinforcement, as well as nicotine-seeking behavior induced by cues and priming. These effects appear to be specific to nicotine-associated behaviors, as stimulation did not have any effect on food-taking behavior. They appear to be anatomically specific, as stimulation surrounding the insular region had no effect on behavior. Stimulation of brain slices containing the insular region was found to inactivate insular neurons. Our results suggest that deep brain stimulation to modulate insular activity should be further explored.


Journal of Neurophysiology | 2013

Deep brain stimulation of the substantia nigra pars reticulata improves forelimb akinesia in the hemiparkinsonian rat

Alexander C. Sutton; Wilson Yu; Megan Calos; Autumn B. Smith; Adolfo Ramirez-Zamora; Eric Molho; Julie G. Pilitsis; Jonathan M. Brotchie; Damian S. Shin

Deep brain stimulation (DBS) employing high-frequency stimulation (HFS) is commonly used in the globus pallidus interna (GPi) and the subthalamic nucleus (STN) for treating motor symptoms of patients with Parkinsons disease (PD). Although DBS improves motor function in most PD patients, disease progression and stimulation-induced nonmotor complications limit DBS in these areas. In this study, we assessed whether stimulation of the substantia nigra pars reticulata (SNr) improved motor function. Hemiparkinsonian rats predominantly touched with their unimpaired forepaw >90% of the time in the stepping and limb-use asymmetry tests. After SNr-HFS (150 Hz), rats touched equally with both forepaws, similar to naive and sham-lesioned rats. In vivo, SNr-HFS decreased beta oscillations (12-30 Hz) in the SNr of freely moving hemiparkinsonian rats and decreased SNr neuronal spiking activity from 28 ± 1.9 Hz before stimulation to 0.8 ± 1.9 Hz during DBS in anesthetized animals; also, neuronal spiking activity increased from 7 ± 1.6 to 18 ± 1.6 Hz in the ventromedial portion of the thalamus (VM), the primary SNr efferent. In addition, HFS of the SNr in brain slices from normal and reserpine-treated rat pups resulted in a depolarization block of SNr neuronal activity. We demonstrate improvement of forelimb akinesia with SNr-HFS and suggest that this motor effect may have resulted from the attenuation of SNr neuronal activity, decreased SNr beta oscillations, and increased activity of VM thalamic neurons, suggesting that the SNr may be a plausible DBS target for treating motor symptoms of DBS.


European Journal of Neuroscience | 2013

Elevated potassium provides an ionic mechanism for deep brain stimulation in the hemiparkinsonian rat

Alexander C. Sutton; Wilson Yu; Megan Calos; Lauren E Mueller; Matthew A. Berk; Jenny Shim; Eric Molho; Jonathan M. Brotchie; Peter L. Carlen; Damian Seung-Ho Shin

The mechanism of high‐frequency stimulation used in deep brain stimulation (DBS) for Parkinsons disease (PD) has not been completely elucidated. Previously, high‐frequency stimulation of the rat entopeduncular nucleus, a basal ganglia output nucleus, elicited an increase in [K+]e to 18 mm, in vitro. In this study, we assessed whether elevated K+ can elicit DBS‐like therapeutic effects in hemiparkinsonian rats by employing the limb‐use asymmetry test and the self‐adjusting stepping test. We then identified how these effects were meditated with in‐vivo and in‐vitro electrophysiology. Forelimb akinesia improved in hemiparkinsonian rats undergoing both tests after 20 mm KCl injection into the substantia nigra pars reticulata (SNr) or the subthalamic nucleus. In the SNr, neuronal spiking activity decreased from 38.2 ± 1.2 to 14.6 ± 1.6 Hz and attenuated SNr beta‐frequency (12–30 Hz) oscillations after K+ treatment. These oscillations are commonly associated with akinesia/bradykinesia in patients with PD and animal models of PD. Pressure ejection of 20 mm KCl onto SNr neurons in vitro caused a depolarisation block and sustained quiescence of SNr activity. In conclusion, our data showed that elevated K+ injection into the hemiparkinsonian rat SNr improved forelimb akinesia, which coincided with a decrease in SNr neuronal spiking activity and desynchronised activity in SNr beta frequency, and subsequently an overall increase in ventral medial thalamic neuronal activity. Moreover, these findings also suggest that elevated K+ may provide an ionic mechanism that can contribute to the therapeutic effects of DBS for the motor treatment of advanced PD.


Epilepsia | 2011

Isovaline, a rare amino acid, has anticonvulsant properties in two in vitro hippocampal seizure models by increasing interneuronal activity

Damian S. Shin; Wilson Yu; Alexander C. Sutton; Megan Calos; Ernest Puil; Peter L. Carlen

Purpose:  We investigated whether RS‐isovaline, a unique amino acid found in carbonaceous meteorites and presumed extraterrestrial, has anticonvulsant properties in rat hippocampal slices in vitro.


Neurobiology of Disease | 2015

Seizure-dependent mTOR activation in 5-HT neurons promotes autism-like behaviors in mice

John McMahon; Wilson Yu; Jun Yang; Haihua Feng; Meghan Helm; Elizabeth McMahon; Xinjun Zhu; Damian S. Shin; Yunfei Huang

Epilepsy and autism spectrum disorder (ASD) are common comorbidities of one another. Despite the prevalent correlation between the two disorders, few studies have been able to elucidate a mechanistic link. We demonstrate that forebrain specific Tsc1 deletion in mice causes epilepsy and autism-like behaviors, concomitant with disruption of 5-HT neurotransmission. We find that epileptiform activity propagates to the raphe nuclei, resulting in seizure-dependent hyperactivation of mTOR in 5-HT neurons. To dissect whether mTOR hyperactivity in 5-HT neurons alone was sufficient to recapitulate an autism-like phenotype we utilized Tsc1flox/flox;Slc6a4-cre mice, in which mTOR is restrictively hyperactivated in 5-HT neurons. Tsc1flox/flox;Slc6a4-cre mice displayed alterations of the 5-HT system and autism-like behaviors, without causing epilepsy. Rapamycin treatment in these mice was sufficient to rescue the phenotype. We conclude that the spread of seizure activity to the brainstem is capable of promoting hyperactivation of mTOR in the raphe nuclei, which in turn promotes autism-like behaviors. Thus our study provides a novel mechanism describing how epilepsy can contribute to the development of autism-like behaviors, suggesting new therapeutic strategies for autism.


Epilepsy Research | 2014

Isovaline attenuates epileptiform activity and seizure behavior in 4-aminopyridine treated rats

Wilson Yu; Autumn B. Smith; Julie G. Pilitsis; Damian S. Shin

Epilepsy is the most common neurological disorder in the world and although there are various treatment options available, 30% of patients remain intractable. Current antiepileptic drugs (AEDs) provide efficacy primarily by decreasing excitation or increasing inhibition in the seizing brain. Isovaline, a unique amino acid, was shown to attenuate seizure-like events (SLEs) in two in vitro hippocampal seizure models by selectively increasing the activity of interneurons, but not pyramidal neurons. Here, we demonstrate that 4-aminopyridine (4-AP) induced hippocampal epileptiform activity in vivo and seizing behavior, which were attenuated with intravenous (IV) isovaline treatment. We are the first to demonstrate that isovaline has potential as an AED and a conceptual framework for managing epilepsy could revolve around its novel mechanism of action.


Journal of Neurophysiology | 2011

Elevated potassium elicits recurrent surges of large GABAA-receptor-mediated post-synaptic currents in hippocampal CA3 pyramidal neurons

Damian Seung-Ho Shin; Wilson Yu; Alexander C. Sutton; Megan Calos; Peter L. Carlen

Previously, we found that rat hippocampal CA3 interneurons become hyperactive with increasing concentrations of extracellular K(+) up to 10 mM. However, it is unclear how this enhanced interneuronal activity affects pyramidal neurons. Here we voltage-clamped rat hippocampal CA3 pyramidal neurons in vitro at 0 mV to isolate γ-aminobutyric acid (GABA)-activated inhibitory post-synaptic currents (IPSCs) and measured these in artificial cerebrospinal fluid (aCSF) and with 10 mM K(+) bath perfusion. In aCSF, small IPSCs were present with amplitudes of 0.053 ± 0.007 nA and a frequency of 0.27 ± 0.14 Hz. With 10 mM K(+) perfusion, IPSCs increased greatly in frequency and amplitude, culminating in surge events with peak amplitudes of 0.56 ± 0.08 nA, that appeared and disappeared cyclically with durations lasting 2.02 ± 0.37 min repeatedly, up to 10 times over a 30-min bath perfusion of elevated K(+). These large IPSCs were GABA(A)-receptor mediated and did not involve significant desensitization of this receptor. Perfusion of a GABA transporter inhibitor (NO-711), glutamate receptor inhibitors CNQX and APV, or a gap junctional blocker (carbenoxolone) prevented the resurgence of large IPSCs. Pressure ejected sucrose resulted in the abolishment of subsequent surges. No elevated K(+)-mediated surges were observed in CA3 interneurons from the stratum oriens layer. In conclusion, these cyclic large IPSC events observable in CA3 pyramidal neurons in 10 mM KCl may be due to transient GABA depletion from continuously active interneuronal afferents.


Neuroscience Letters | 2015

Isovaline attenuates generalized epileptiform activity in hippocampal and primary sensory cortices and seizure behavior in pilocarpine treated rats

Wilson Yu; Autumn B. Smith; Julie G. Pilitsis; Damian S. Shin

Anti-seizure drugs are the most commonly employed treatment option for epilepsy and these generally provide effective management of seizures. However, 30% of patients with epilepsy are not adequately treated with anti-seizure medications and are considered intractable. Recently we reported that isovaline, a unique amino acid, could attenuate seizure like events (SLEs) in two in vitro hippocampal seizure models by selectively increasing the activity of interneurons, but not pyramidal neurons. Isovaline also attenuated hippocampal epileptiform activity and behavioral seizures in vivo in rats administered 4 aminopyridine (4AP). Here, we investigate whether isovaline is efficacious in attenuating secondarily generalized epileptiform activity and behavioral seizures in rats administered pilocarpine. We found that 150 mg/kg isovaline administered intravenously abolished pilocarpine-induced epileptiform activity in the primary sensory cortex and hippocampus and attenuated generalized forebrain behavioral seizures. We are the first to demonstrate that isovaline may be a plausible anti-seizure drug for secondarily generalized seizures and this could potentially lead to the development of a novel class of anti-seizure drugs focused around the unique mechanism(s) of isovaline.


Experimental Neurology | 2015

Gap junction blockers attenuate beta oscillations and improve forelimb function in hemiparkinsonian rats

Sujoy Phookan; Alexander C. Sutton; Ian Walling; Autumn B. Smith; Katherine A. O'Connor; Joannalee C. Campbell; Megan Calos; Wilson Yu; Julie G. Pilitsis; Jonathan M. Brotchie; Damian S. Shin

Parkinsons disease (PD) is a neurodegenerative disease characterized by akinesia, bradykinesia, resting tremors and postural instability. Although various models have been developed to explain basal ganglia (BG) pathophysiology in PD, the recent reports that dominant beta (β) oscillations (12-30Hz) in BG nuclei of PD patients and parkinsonian animals coincide with motor dysfunction has led to an emerging idea that these oscillations may be a characteristic of PD. Due to the recent realization of these oscillations, the cellular and network mechanism(s) that underlie this process remain ill-defined. Here, we postulate that gap junctions (GJs) can contribute to β oscillations in the BG of hemiparkinsonian rats and inhibiting their activity will disrupt neuronal synchrony, diminish these oscillations and improve motor function. To test this, we injected the GJ blockers carbenoxolone (CBX) or octanol in the right globus pallidus externa (GPe) of anesthetized hemiparkinsonian rats and noted whether subsequent changes in β oscillatory activity occurred using in vivo electrophysiology. We found that systemic treatment of 200mg/kg CBX attenuated normalized GPe β oscillatory activity from 6.10±1.29 arbitrary units (A.U.) (pre-CBX) to 2.48±0.87 A.U. (post-CBX) with maximal attenuation occurring 90.0±20.5min after injection. The systemic treatment of octanol (350mg/kg) also decreased β oscillatory activity in a similar manner to CBX treatment with β oscillatory activity decreasing from 3.58±0.89 (pre-octanol) to 2.57±1.08 after octanol injection. Next, 1μl CBX (200mg/kg) was directly injected into the GPe of anesthetized hemiparkinsonian rats; 59.2±19.0min after injection, β oscillations in this BG nucleus decreased from 3.62±1.17 A.U. to 1.67±0.62 A.U. Interestingly, we were able to elicit β oscillations in the GPe of naive non-parkinsonian rats by increasing GJ activity with 1μl trimethylamine (TMA, 500nM). Finally, we systemically injected CBX (200mg/kg) into hemiparkinsonian rats which attenuated dominant β oscillations in the right GPe and also improved left forepaw akinesia in the step test. Conversely, direct injection of TMA into the right GPe of naive rats induced contralateral left forelimb akinesia. Overall, our results suggest that GJs contribute to β oscillations in the GPe of hemiparkinsonian rats.


Brain Stimulation | 2016

Deep Brain Stimulation of the Ventral Pallidum Attenuates Epileptiform Activity and Seizing Behavior in Pilocarpine-Treated Rats.

Wilson Yu; Ian Walling; Autumn B. Smith; Adolfo Ramirez-Zamora; Julie G. Pilitsis; Damian S. Shin

BACKGROUND Brain stimulation is effective for people with intractable epilepsy. However, modulating neural targets that provide greater efficacy to more individuals is still needed. OBJECTIVE/HYPOTHESIS We investigate whether bilateral deep brain stimulation of the ventral pallidum (VP-DBS) has potent seizure control in pilocarpine-treated rats. METHODS VP-DBS (50 Hz) was applied prior to generalized forebrain seizures or after generalized brainstem seizures manifested. Behavioral seizures were assessed using a modified Racine scale. In vitro and in vivo electrophysiological techniques were employed to identify how VP-DBS affects proximal and distal neuronal activity. The open field test was used to see if acute and chronic VP-DBS affected gross motor function or arousal state. Parametric and non-parametric statistics with post-hoc analysis were performed. RESULTS VP-DBS prior to pilocarpine prevented behavioral forebrain and brainstem seizures in most animals (n = 15). VP-DBS after brainstem seizures emerged prevented or reduced the appearance of subsequent behavioral brainstem seizures (n = 11). VP-DBS attenuated epileptiform activity in the hippocampus (n = 5), but not in the primary somatosensory cortex (S1) (n = 4) in vivo. Electrical stimulation in the VP increased VP GABAergic neuronal firing activity from 3.1 ± 1.4 Hz to 7.6 ± 1.7 Hz (n = 8) in vitro and reduced substantia nigra reticulata and superior colliculus neuronal spiking activity from 25.4 ± 3.3 Hz to 18.2 ± 1.4 Hz (n = 6) and 18.2 ± 1.4 Hz to 11.0 ± 1.1 Hz (n = 18), respectively, in vivo. CONCLUSION VP-DBS can be a novel and potent therapeutic approach for individuals with intractable epilepsy.

Collaboration


Dive into the Wilson Yu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Megan Calos

Albany Medical College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric Molho

Albany Medical College

View shared research outputs
Researchain Logo
Decentralizing Knowledge