Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Damien Freyssenet is active.

Publication


Featured researches published by Damien Freyssenet.


The Journal of Physiology | 2002

Molecular adaptations of neuromuscular disease-associated proteins in response to eccentric exercise in human skeletal muscle

L. Féasson; Daniel Stockholm; Damien Freyssenet; I. Richard; S. Duguez; Jacques S. Beckmann; Christian Denis

The molecular events by which eccentric muscle contractions induce muscle damage and remodelling remain largely unknown. We assessed whether eccentric exercise modulates the expression of proteinases (calpains 1, 2 and 3, proteasome, cathepsin B+L), muscle structural proteins (α‐sarcoglycan and desmin), and the expression of the heat shock proteins Hsp27 and αB‐crystallin. Vastus lateralis muscle biopsies from twelve healthy male volunteers were obtained before, immediately after, and 1 and 14 days after a 30 min downhill treadmill running exercise. Eccentric exercise induced muscle damage as evidenced by the analysis of muscle pain and weakness, creatine kinase serum activity, myoglobinaemia and ultrastructural analysis of muscle biopsies. The calpain 3 mRNA level was decreased immediately after exercise whereas calpain 2 mRNA level was increased at day 1. Both mRNA levels returned to control values by day 14. By contrast, cathepsin B+L and proteasome enzyme activities were increased at day 14. The α‐sarcoglycan protein level was decreased immediately after exercise and at day 1, whereas the desmin level peaked at day 14. αB‐crystallin and Hsp27 protein levels were increased at days 1 and 14. Our results suggest that the differential expression of calpain 2 and 3 mRNA levels may be important in the process of exercise‐induced muscle damage, whereas expression of α‐sarcoglycan, desmin, αB‐crystallin and Hsp27 may be essentially involved in the subsequent remodelling of myofibrillar structure. This remodelling response may limit the extent of muscle damage upon a subsequent mechanical stress.


Endocrinology | 2009

Down-regulation of Akt/mammalian target of rapamycin signaling pathway in response to myostatin overexpression in skeletal muscle.

Adel Amirouche; Anne-Cécile Durieux; Sébastien Banzet; Nathalie Koulmann; Régis Bonnefoy; Catherine Mouret; Xavier Bigard; André Peinnequin; Damien Freyssenet

Myostatin, a member of the TGF-beta family, has been identified as a master regulator of embryonic myogenesis and early postnatal skeletal muscle growth. However, cumulative evidence also suggests that alterations in skeletal muscle mass are associated with dysregulation in myostatin expression and that myostatin may contribute to muscle mass loss in adulthood. Two major branches of the Akt pathway are relevant for the regulation of skeletal muscle mass, the Akt/mammalian target of rapamycin (mTOR) pathway, which controls protein synthesis, and the Akt/forkhead box O (FOXO) pathway, which controls protein degradation. Here, we provide further insights into the mechanisms by which myostatin regulates skeletal muscle mass by showing that myostatin negatively regulates Akt/mTOR signaling pathway. Electrotransfer of a myostatin expression vector into the tibialis anterior muscle of Sprague Dawley male rats increased myostatin protein level and decreased skeletal muscle mass 7 d after gene electrotransfer. Using RT-PCR and immunoblot analyses, we showed that myostatin overexpression was ineffective to alter the ubiquitin-proteasome pathway. By contrast, myostatin acted as a negative regulator of Akt/mTOR pathway. This was supported by data showing that the phosphorylation of Akt on Thr308, tuberous sclerosis complex 2 on Thr1462, ribosomal protein S6 on Ser235/236, and 4E-BP1 on Thr37/46 was attenuated 7 d after myostatin gene electrotransfer. The data support the conclusion that Akt/mTOR signaling is a key target that accounts for myostatin function during muscle atrophy, uncovering a novel role for myostatin in protein metabolism and more specifically in the regulation of translation in skeletal muscle.


Pflügers Archiv: European Journal of Physiology | 2008

Cellular and molecular events controlling skeletal muscle mass in response to altered use

François B. Favier; Henri Benoit; Damien Freyssenet

Gain or loss of skeletal muscle mass occurs in situations of altered use such as strength training, aging, denervation, or immobilization. This review examines our current understanding of the cellular and molecular events involved in the control of muscle mass under conditions of muscle use and disuse, with particular attention to the effects of resistance exercise/training. The DNA content, which is a critical determinant of protein synthesis by providing the amount of DNA necessary to sustain gene transcription, can be either increased (activation of satellite cells) or decreased (apoptosis) depending on muscle activity and ongoing physiological processes. In addition, several transcription factors are sensitive to functional demand and may control muscle-specific protein expression to promote or repress myofiber enlargement. The control of skeletal muscle mass is also markedly mediated by the regulation of transduction pathways that promote the synthesis and/or the degradation of proteins. Insulin-like growth factor-I plays a key role in this balance by activating the Akt/tuberous sclerosis complex 2/mammalian target of rapamycin pathway. Stimulation of this pathway leads to the concomitant activation of initiation and elongation factors resulting in the elevation of protein translation and the downregulation of ubiquitin proteasome components through Forkhead-box O transcription factors.


Journal of Biological Chemistry | 1999

Calcium-dependent regulation of cytochrome c gene expression in skeletal muscle cells. Identification of a protein kinase c-dependent pathway.

Damien Freyssenet; Martino Di Carlo; David A. Hood

Mitochondrial biogenesis can occur rapidly in mammalian skeletal muscle subjected to a variety of physiological conditions. However, the intracellular signal(s) involved in regulating this process remain unknown. Using nuclearly encoded cytochromec, we show that its expression in muscle cells is increased by changes in cytosolic Ca2+ using the ionophore A23187. Treatment of myotubes with A23187 increased cytochrome cmRNA expression up to 1.7-fold. Transfection experiments using promoter-chloramphenicol acetyltransferase constructs revealed that this increase could be transcriptionally mediated since A23187 increased chloramphenicol acetyltransferase activity by 2.5-fold. This increase was not changed by KN62, an inhibitor of Ca2+/calmodulin-dependent kinases II and IV, and it was not modified by overexpression of protein kinase A and cAMP response element-binding protein, demonstrating that the A23187 effect was not mediated through Ca2+/calmodulin-dependent kinase- or protein kinase A-dependent pathways. However, treatment of myotubes with staurosporine or 12-O-tetradecanoylphorbol-13-acetate reduced the effect of A23187 on cytochrome ctransactivation by 40–50%. Coexpression of the Ca2+-sensitive protein kinase C isoforms α and βII, but not the Ca2+-insensitive δ isoform, exaggerated the A23187-mediated response. The short-term effect of A23187 was mediated in part by mitogen-activated protein kinase (extracellular signal-regulated kinases 1 and 2) since its activation peaked 2 h after A23187 treatment, and cytochromec transactivation was reduced by PD98089, a mitogen-activated protein kinase/extracellular signal-regulated kinase kinase inhibitor. These results demonstrate the existence of a Ca2+-sensitive, protein kinase C-dependent pathway involved in cytochrome c expression and implicate Ca2+ as a signal in the up-regulation of nuclear genes encoding mitochondrial proteins.


American Journal of Physiology-cell Physiology | 1998

Contractile activity-induced adaptations in the mitochondrial protein import system

Mark Takahashi; Alan Chesley; Damien Freyssenet; David A. Hood

We previously demonstrated that subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondrial subfractions import proteins at different rates. This study was undertaken to investigate 1) whether protein import is altered by chronic contractile activity, which induces mitochondrial biogenesis, and 2) whether these two subfractions adapt similarly. Using electrical stimulation (10 Hz, 3 h/day for 7 and 14 days) to induce contractile activity, we observed that malate dehydrogenase import into the matrix of the SS and IMF mitochondia isolated from stimulated muscle was significantly increased by 1.4- to 1.7-fold, although the pattern of increase differed for each subfraction. This acceleration of import may be mitochondrial compartment specific, since the import of Bcl-2 into the outer membrane was not affected. Contractile activity also modified the mitochondrial content of proteins comprising the import machinery, as evident from increases in the levels of the intramitochondrial chaperone mtHSP70 as well as the outer membrane import receptor Tom20 in SS and IMF mitochondria. Addition of cytosol isolated from stimulated or control muscles to the import reaction resulted in similar twofold increases in the ability of mitochondria to import malate dehydrogenase, despite elevations in the concentration of mitochondrial import-stimulating factor within the cytosol of chronically stimulated muscle. These results suggest that chronic contractile activity modifies the extra- and intramitochondrial environments in a fashion that favors the acceleration of precursor protein import into the matrix of the organelle. This increase in protein import is likely an important adaptation in the overall process of mitochondrial biogenesis.We previously demonstrated that subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondrial subfractions import proteins at different rates. This study was undertaken to investigate 1) whether protein import is altered by chronic contractile activity, which induces mitochondrial biogenesis, and 2) whether these two subfractions adapt similarly. Using electrical stimulation (10 Hz, 3 h/day for 7 and 14 days) to induce contractile activity, we observed that malate dehydrogenase import into the matrix of the SS and IMF mitochondia isolated from stimulated muscle was significantly increased by 1.4-to 1.7-fold, although the pattern of increase differed for each subfraction. This acceleration of import may be mitochondrial compartment specific, since the import of Bcl-2 into the outer membrane was not affected. Contractile activity also modified the mitochondrial content of proteins comprising the import machinery, as evident from increases in the levels of the intramitochondrial chaperone mtHSP70 as well as the outer membrane import receptor Tom20 in SS and IMF mitochondria. Addition of cytosol isolated from stimulated or control muscles to the import reaction resulted in similar twofold increases in the ability of mitochondria to import malate dehydrogenase, despite elevations in the concentration of mitochondrial import-stimulating factor within the cytosol of chronically stimulated muscle. These results suggest that chronic contractile activity modifies the extra- and intramitochondrial environments in a fashion that favors the acceleration of precursor protein import into the matrix of the organelle. This increase in protein import is likely an important adaptation in the overall process of mitochondrial biogenesis.


Journal of Gene Medicine | 2004

In vivo gene electrotransfer into skeletal muscle: effects of plasmid DNA on the occurrence and extent of muscle damage

Anne-Cécile Durieux; Régis Bonnefoy; Thierry Busso; Damien Freyssenet

Understanding the mechanisms underlying gene electrotransfer muscle damage can help to design more effective gene electrotransfer strategies for physiological and therapeutical applications. The present study investigates the factors involved in gene electrotransfer associated muscle damage.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2010

Downregulation of Akt/mammalian target of rapamycin pathway in skeletal muscle is associated with increased REDD1 expression in response to chronic hypoxia

François B. Favier; Frédéric Costes; Aurélia Defour; Régis Bonnefoy; Etienne Lefai; Stéphane Baugé; Andre Peinnequin; Henri Benoit; Damien Freyssenet

Although it is well established that chronic hypoxia leads to an inexorable loss of skeletal muscle mass in healthy subjects, the underlying molecular mechanisms involved in this process are currently unknown. Skeletal muscle atrophy is also an important systemic consequence of chronic obstructive pulmonary disease (COPD), but the role of hypoxemia in this regulation is still debated. Our general aim was to determine the molecular mechanisms involved in the regulation of skeletal muscle mass after exposure to chronic hypoxia and to test the biological relevance of our findings into the clinical context of COPD. Expression of positive and negative regulators of skeletal muscle mass were explored 1) in the soleus muscle of rats exposed to severe hypoxia (6,300 m) for 3 wk and 2) in vastus lateralis muscle of nonhypoxemic and hypoxemic COPD patients. In rodents, we observed a marked inhibition of the mammalian target of rapamycin (mTOR) pathway together with a strong increase in regulated in development and DNA damage response 1 (REDD1) expression and in its association with 14-3-3, a mechanism known to downregulate the mTOR pathway. Importantly, REDD1 overexpression in vivo was sufficient to cause skeletal muscle fiber atrophy in normoxia. Finally, the comparative analysis of skeletal muscle in hypoxemic vs. nonhypoxemic COPD patients confirms that hypoxia causes an inhibition of the mTOR signaling pathway. We thus identify REDD1 as a negative regulator of skeletal muscle mass during chronic hypoxia. Translation of this fundamental knowledge into the clinical investigation of COPD shows the interest to develop therapeutic strategies aimed at inhibiting REDD1.


Molecular and Cellular Biology | 2010

A New Role for Sterol Regulatory Element Binding Protein 1 Transcription Factors in the Regulation of Muscle Mass and Muscle Cell Differentiation

Virginie Lecomte; Vanessa Euthine; Christine Durand; Damien Freyssenet; Georges Némoz; Sophie Rome; Hubert Vidal; Etienne Lefai

ABSTRACT The role of the transcription factors sterol regulatory element binding protein 1a (SREBP-1a) and SREBP-1c in the regulation of cholesterol and fatty acid metabolism has been well studied; however, little is known about their specific function in muscle. In the present study, analysis of recent microarray data from muscle cells overexpressing SREBP1 suggested that they may play a role in the regulation of myogenesis. We then demonstrated that SREBP-1a and -1c inhibit myoblast-to-myotube differentiation and also induce in vivo and in vitro muscle atrophy. Furthermore, we have identified the transcriptional repressors BHLHB2 and BHLHB3 as mediators of these effects of SREBP-1a and -1c in muscle. Both repressors are SREBP-1 target genes, and they affect the expression of numerous genes involved in the myogenic program. Our findings identify a new role for SREBP-1 transcription factors in muscle, thus linking the control of muscle mass to metabolic pathways.


Biochemical and Biophysical Research Communications | 2002

High-efficiency gene electrotransfer into skeletal muscle: description and physiological applicability of a new pulse generator

Anne-Cécile Durieux; Régis Bonnefoy; Chloé Manissolle; Damien Freyssenet

Efficiency and reproducibility of gene electrotransfer depend on the electrical specifications provided by the pulse generator, such as pulse duration, pulse number, pulse frequency, pulse combination, and current intensity. Here, we describe the performances of GET42, a pulse generator specifically designed for gene electrotransfer into skeletal muscle. Expression of beta-galactosidase in the Tibialis anterior muscle of Sprague-Dawley male rats was increased 250-fold by GET42 compared to DNA injection alone. Combination of high and low current intensity pulses further increased transfection efficiency (400-fold compared to DNA injection without electrotransfer). Varying degrees of muscle necrosis were observed after gene electrotransfer. Nevertheless, muscle necrosis was dramatically reduced after optimization of cumulated pulse duration without significant reduction in transfection efficiency. Physiological applicability was illustrated by the analysis of cytochrome c promoter transactivation. In conclusion, GET42 has proven to be a reliable and efficient pulse generator for gene electrotransfer experiments, and provides a powerful mean to study in vivo the regulation of gene expression.


American Journal of Physiology-cell Physiology | 2009

Control of mitochondrial biogenesis, ROS level, and cytosolic Ca2+ concentration during the cell cycle and the onset of differentiation in L6E9 myoblasts

Vanessa E. Jahnke; Odile Sabido; Damien Freyssenet

Mitochondria can sense signals linked to changes in energy demand to affect nuclear gene expression. This retrograde signaling pathway is presumed to be involved in the regulation of myoblast proliferation and differentiation. We have investigated the regulation of mitochondrial biogenesis and production of putative retrograde signaling agents [hydrogen peroxide (H(2)O(2)) and Ca(2+)] during the cell cycle and the onset of differentiation in L6E9 muscle cells. The biosynthesis of cardiolipin and mitochondrial proteins was mainly achieved in S phase, whereas the expression of mitochondrial biogenesis factors [peroxisome proliferator-activated receptor (PPAR)-alpha, PPAR-delta, and neuronal nitric oxide synthase 1] was regularly increased from G(1) to G(2)M phase. In agreement with the increase in mitochondrial membrane potential, mitochondria in S and G(2)M phases have a significantly higher H(2)O(2) level when compared with G(1) phase. By contrast, the onset of differentiation was characterized by a marked reduction in mitochondrial protein expression and mitochondrial H(2)O(2) level. The capacity of mitochondria to release Ca(2+) in response to a metabolic challenge was significantly decreased at the onset of differentiation. Finally, an increase in calmodulin expression in S and G(2)M phases and a transitory increase in phosphorylated nuclear factor of activated T cells (NFAT) c3 in S phase was observed. NFATc3 phosphorylation was markedly decreased at the onset of differentiation. Our data point to functional links between the control of mitochondrial biogenesis and the regulation of the level of retrograde signaling agents during the cell cycle and the onset of differentiation in L6E9 muscle cells.

Collaboration


Dive into the Damien Freyssenet's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Etienne Lefai

Institut national des sciences appliquées

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge