Damjan Makuc
University of Ljubljana
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Damjan Makuc.
Chemical Science | 2014
Nathalie Busschaert; Louise E. Karagiannidis; Marco Wenzel; Cally J. E. Haynes; Neil J. Wells; Philip G. Young; Damjan Makuc; Janez Plavec; Katrina A. Jolliffe; Philip A. Gale
The transmembrane transport of anions by small synthetic molecules is a growing field in supramolecular chemistry and has focussed mainly on the transmembrane transport of chloride. On the other hand, the transport of the highly hydrophilic sulfate anion across lipid bilayers is much less developed, even though the inability to transport sulfate across cellular membranes has been linked to a variety of genetic diseases. Tris-thioureas possess high sulfate affinities and have been shown to be excellent chloride and bicarbonate transporters. Herein we report the sulfate transport abilities of a series of tris-ureas and tris-thioureas based on a tris(2-aminoethyl)amine or cyclopeptide scaffold. We have developed a new technique based on 33S NMR that can be used to monitor sulfate transport, using 33S-labelled sulfate and paramagnetic agents such as Mn2+ and Fe3+ to discriminate between intra- and extravesicular sulfate. Reasonable sulfate transport abilities were found for the reported tris-ureas and tris-thioureas, providing a starting point for the development of more powerful synthetic sulfate transporters that can be used in the treatment of certain channelopathies or as a model for biological sulfate transporters.
Bioorganic & Medicinal Chemistry | 2008
Tatjana Gazivoda; Silvana Raić-Malić; Vedran Krištafor; Damjan Makuc; Janez Plavec; Siniša Bratulić; Sandra Kraljević-Pavelić; Krešimir Pavelić; Lieve Naesens; Graciela Andrei; Robert Snoeck; Jan Balzarini; Mladen Mintas
Abstract A series of the novel C-5 alkynyl pyrimidine nucleoside analogues (1–14) in which the sugar moiety was replaced by the conformationally restricted Z- and E-2-butenyl spacer between the phthalimido and pyrimidine ring were synthesized by using Sonogashira cross-coupling reaction. Cytostatic activity evaluation of the novel compounds showed that E-isomers exhibited, in general, better cytostatic activities than the corresponding Z-isomers. E-isomer 14 exhibited the best cytostatic effect against all evaluated malignant cell lines, particularly against hepatocellular carcinoma (Hep G2, IC50 =4.3μM). However, this compound was also cytotoxic to human normal fibroblasts (WI 38). Its Z-isomer 7 showed highly specific antiproliferative activity against Hep G2 (IC50 =18μM) and no cytotoxicity to WI 38. Moreover, compounds 3, 4 and 14 expressed some marginal inhibitory activity against HIV-1 and HIV-2.
Molecules | 2011
Davorka Završnik; Samija Muratović; Damjan Makuc; Janez Plavec; Mario Cetina; Ante Nagl; Erik De Clercq; Jan Balzarini; Mladen Mintas
We report on the synthesis of 4-hydroxycoumarin dimers 1–15 bearing an aryl substituent on the central linker and fused benzopyranocoumarin derivatives 16–20 and on their in vitro broad anti-DNA and RNA virus activity evaluations. The chemical identities and structure of compounds 1–20 were deduced from their homo- and heteronuclear NMR measurements whereas the conformational properties of 5, 14 and 20 were assessed by the use of 1D difference NOE enhancements. Unequivocal proof of the stereostructure of compounds 7, 9, 16 and 18 was obtained by single crystal X-ray diffraction method. The X-ray crystal structure analysis revealed that two 4-hydroxycoumarin moieties in the 4-trifluoromethylphenyl- and 2-nitrophenyl derivatives (compounds 7 and 9, respectively) are intramolecularly hydrogen-bonded between hydroxyl and carbonyl oxygen atoms. Consequently, the compounds 7 and 9 adopt conformations in which two 4-hydroxy-coumarin moieties are anti-disposed. Antiviral activity evaluation results indicated that the 4-bromobenzylidene derivative of bis-(4-hydroxycoumarin) (compound 3) possesses inhibitory activity against HSV-1 (KOS), HSV-2 (G), vaccinia virus and HSV-1 TK- KOS (ACVr) at a concentration of 9–12 μM and at a minimum cytotoxic concentration (MCC) greater than 20 μM. Compounds 4–6, 8, and 20 were active against feline herpes virus (50% effective concentration, EC50 = 5–8.1 μM), that is at a 4-7-fold lower concentration than the MCC.
Bioorganic & Medicinal Chemistry | 2012
Karlo Wittine; Maja Stipković Babić; Damjan Makuc; Janez Plavec; Sandra Kraljević Pavelić; Mirela Sedić; Krešimir Pavelić; Pieter Leyssen; Johan Neyts; Jan Balzarini; Mladen Mintas
Several novel 1,2,4-triazole and imidazole L-ascorbic acid (1, 2, 3, 5, 6 and 9) and imino-ascorbic acid (4, 7 and 8) derivatives were prepared and evaluated for their inhibitory activity against hepatitis C virus (HCV) replication and human tumour cell proliferation. Compounds 6 and 9 exerted the most pronounced cytostatic effects in all tumour cell lines tested, and were highly selective for human T-cell acute lymphoblastic leukaemia cells (CEM/0) with IC(50)s of 10 ± 4 and 7.3 ± 0.1 μM, respectively. Unlike compound 9, compound 6 showed no toxicity in human diploid fibroblasts. One of the possible mechanisms of action of compound 6 accounting for observed cytostatic activity towards haematological malignancies might be inhibition of inosine monophosphate dehydrogenase (IMPDH) activity, a key enzyme of de novo purine nucleotide biosynthesis providing the cells with precursors for DNA and RNA synthesis indispensable for cell growth and division, which has emerged as an important target for antileukemic therapy. In addition, this compound proved to be the most potent inhibitor of the hepatitis C virus replication as well. However, observed antiviral effect was most likely associated with the effect that the compound exerted on the host cell rather than with selective effect on the replication of the virus itself. In conclusion, results of this study put forward compound 6 as a potential novel antitumor agent (IMPDH inhibitor) for treating leukaemia. Its significant biological activity and low toxicity in human diploid fibroblasts encourage further development of this compound as a lead.
Beilstein Journal of Organic Chemistry | 2011
Damjan Makuc; Jennifer R. Hiscock; Mark E. Light; Philip A. Gale; Janez Plavec
Summary The conformational properties of 1,3-diindolylureas and thioureas were studied by a combination of heteronuclear NMR spectroscopy and quantum mechanics calculations. NOE experiments showed that the anti–anti conformer along the C7–N7α bonds was predominant in DMSO-d 6 solution in the absence of anions. Anion-induced changes in the 1H and 15N chemical shifts confirm the weak binding of chloride anions with negligible conformational changes. Strong deshielding of ureido protons and moderate deshielding of indole NH was observed upon the addition of acetate, benzoate, bicarbonate and dihydrogen phosphate, which indicated that the predominant hydrogen bond interactions occurred at the urea donor groups. Binding of oxo-anions caused conformational changes along the C7–N7α bonds and the syn–syn conformer was preferred for anion–receptor complexes. The conformational changes upon anion binding are in good agreement with energetic preferences established by ab initio calculations.
Antiviral Chemistry & Chemotherapy | 2005
Svjetlana Prekupec; Damjan Makuc; Janez Plavec; Sandra Kraljević; Marijeta Kralj; Krešimir Pavelić; Graciela Andrei; Robert Snoeck; Jan Balzarini; Erik De Clercq; Silvana Raić-Malić; Mladen Mintas
A series of the novel 5-methyl pyrimidine derivatives with an acyclic side chain at the C-6 position were synthesized using lithiation of a 2,4-dimethoxy-5,6-dimethyl pyrimidine and subsequent nucleophilic addition or substitution reactions of the organolithium intermediate thus obtained with acetaldehyde, epichlorhydrine, fluorinated ketones and fluorinated ester. The novel compounds were evaluated for their cytostatic and antiviral activities. Among all the compounds evaluated, two fluorinated acyclic pyrimidine derivatives showed the highest cytostatic activities. The compound containing a 2-hydroxy-3,3,3-trifluoro-1-propenyl side chain exhibited a pronounced effect against breast carcinoma (MCF-7, IC50=8.38 μg/ml), while the compound with a 2-fluoromethyl-2-acetoxypropyl chain exhibited moderate effect against cervical carcinoma (HeLa, IC50=19.73 μg/ml).
Carbohydrate Research | 2011
Martin Šala; Damjan Makuc; Jana Kolar; Janez Plavec; Boris Pihlar
Potentiometric, conductometric and ³¹P NMR titrations have been applied to study interactions between myo-inositol hexakisphosphate (phytic acid), (±)-myo-inositol 1,2,3,5-tetrakisphosphate and (±)-myo-inositol 1,2,3-trisphosphate with iron(III) ions. Potentiometric and conductometric titrations of myo-inositol phosphates show that addition of iron increases acidity and consumption of hydroxide titrant. By increasing the Fe(III)/InsP(6) ratio (from 0.5 to 4) 3 mol of protons are released per 2 mol of iron(III). At first, phytates coordinate iron octahedrally between P2 and P1,3. The second coordination site represents P5 and neighbouring P4,6 phosphate groups. Complexation is accompanied with the deprotonation of P1,3 and P4,6 phosphate oxygens. At higher concentration of iron(III) intermolecular P-O-Fe-O-P bonds trigger formation of a polymeric network and precipitation of the amorphous Fe(III)-InsP(6) aggregates. (31)P NMR titration data complement the above results and display the largest chemical shift changes at pD values between 5 and 10 in agreement with strong interactions between iron and myo-inositol phosphates. The differences in T(1) relaxation times of phosphorous atoms have shown that phosphate groups at positions 1, 2 and 3 are complexated with iron(III). The interactions between iron(III) ions and inositol phosphates depend significantly on the metal to ligand ratio and an attempt to coordinate more than two irons per InsP(6) molecule results in an unstable heterogeneous system.
Supramolecular Chemistry | 2010
Damjan Makuc; Markus Albrecht; Janez Plavec
The conformational analysis of four C2-amido and C7-ureido functionalised indole anion receptors was performed by a combination of heteronuclear NMR spectroscopy and ab initio quantum mechanical calculations. NOE experiments showed that anti–anti conformation across C2–C2α and C7–N7α bonds is predominant in acetone solution in the absence of anions. Upon anion binding to receptors, syn–syn conformation becomes predominant. The conformational changes upon anion binding are in good agreement with energetic preferences established by ab initio calculations. Chemical shift changes induced by interaction of anions suggest that binding of chloride and bromide anions occurs primarily to H1 and H7α protons. Nitrate anions favour interaction with H7α and H7γ ureido protons, whereas acetate anions interact strongly with all four available hydrogen bond donor groups.
Frontiers in Physiology | 2018
Robert Šket; Tadej Debevec; Susanne Kublik; Michael Schloter; Anne Schoeller; Boštjan Murovec; Katarina Vogel Mikuš; Damjan Makuc; Klemen Pečnik; Janez Plavec; Igor B. Mekjavic; Ola Eiken; Zala Prevoršek; Blaž Stres
We explored the metagenomic, metabolomic and trace metal makeup of intestinal microbiota and environment in healthy male participants during the run-in (5 day) and the following three 21-day interventions: normoxic bedrest (NBR), hypoxic bedrest (HBR) and hypoxic ambulation (HAmb) which were carried out within a controlled laboratory environment (circadian rhythm, fluid and dietary intakes, microbial bioburden, oxygen level, exercise). The fraction of inspired O2 (FiO2) and partial pressure of inspired O2 (PiO2) were 0.209 and 133.1 ± 0.3 mmHg for the NBR and 0.141 ± 0.004 and 90.0 ± 0.4 mmHg (~4,000 m simulated altitude) for HBR and HAmb interventions, respectively. Shotgun metagenomes were analyzed at various taxonomic and functional levels, 1H- and 13C -metabolomes were processed using standard quantitative and human expert approaches, whereas metals were assessed using X-ray fluorescence spectrometry. Inactivity and hypoxia resulted in a significant increase in the genus Bacteroides in HBR, in genes coding for proteins involved in iron acquisition and metabolism, cell wall, capsule, virulence, defense and mucin degradation, such as beta-galactosidase (EC3.2.1.23), α-L-fucosidase (EC3.2.1.51), Sialidase (EC3.2.1.18), and α-N-acetylglucosaminidase (EC3.2.1.50). In contrast, the microbial metabolomes, intestinal element and metal profiles, the diversity of bacterial, archaeal and fungal microbial communities were not significantly affected. The observed progressive decrease in defecation frequency and concomitant increase in the electrical conductivity (EC) preceded or took place in absence of significant changes at the taxonomic, functional gene, metabolome and intestinal metal profile levels. The fact that the genus Bacteroides and proteins involved in iron acquisition and metabolism, cell wall, capsule, virulence and mucin degradation were enriched at the end of HBR suggest that both constipation and EC decreased intestinal metal availability leading to modified expression of co-regulated genes in Bacteroides genomes. Bayesian network analysis was used to derive the first hierarchical model of initial inactivity mediated deconditioning steps over time. The PlanHab wash-out period corresponded to a profound life-style change (i.e., reintroduction of exercise) that resulted in stepwise amelioration of the negative physiological symptoms, indicating that exercise apparently prevented the crosstalk between the microbial physiology, mucin degradation and proinflammatory immune activities in the host.
Molecules | 2011
Tatjana Gazivoda Kraljević; Martina Petrović; Svjetlana Krištafor; Damjan Makuc; Janez Plavec; Tobias L. Ross; Simon M. Ametamey; Silvana Raić-Malić
Novel N-methoxymethylated (MOM) pyrimidine (4−13) and pyrimidine-2,4-diones (15−17) nucleoside mimetics in which an isobutyl side-chain is attached at the C-6 position of the pyrimidine moiety were synthesized. Synthetic methods via O-persilylated or N-anionic uracil derivatives have been evaluated for the synthesis of N-1- and/or N-3-MOM pyrimidine derivatives with C-6 acyclic side-chains. A synthetic approach using an activated N-anionic pyrimidine derivative afforded the desired N,N-1,3-diMOM and N-1-MOM pyrimidines 4 and 5 in good yield. Introduction of fluorine into the side-chain was performed with DAST as the fluorinating reagent to give a N,N-1,3-diMOM pyrimidine 13 with a 1-fluoro-3-hydroxyisobutyl moiety at C-6. Conformational study of the monotritylated N-1-MOM pyrimidine 12 by the use of the NOE experiments revealed the predominant conformation of the compound to be one where the hydroxymethyl group in the C-6 side-chain is close to the N-1-MOM moiety, while the OMTr is in proximity to the CH3-5 group. Contrary to this no NOE enhancements between the N-1-MOM group and hydroxymethyl or fluoromethyl protons in 13 were observed, which suggested a nonrestricted rotation along the C-6 side-chain. Fluorinated N,N-1,3-diMOM pyrimidine 13 emerged as a model compound for development of tracer molecules for non-invasive imaging of gene expression using positron emission tomography (PET).