Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dammika P. Manage is active.

Publication


Featured researches published by Dammika P. Manage.


Analytical Chemistry | 2010

In-gel technology for PCR genotyping and pathogen detection.

Alexey Atrazhev; Dammika P. Manage; Alexander J. Stickel; H. John Crabtree; Linda M. Pilarski; Jason P. Acker

This work describes the use of polyacrylamide gel and PCR reagents photopolymerized in a mold to create an array of semisolid posts that serve as reaction vessels for parallel PCR amplification of an externally added template. DNA amplification occurred in a cylindrical, self-standing 9 × 9 array of gel posts each less than 1 μL in volume. Photopolymerization of the gel with an intercalating dye added prior to polymerization permitted acquisition of real-time PCR data and melting curve analysis data without the need for any type of post-PCR staining procedures. PCR was equally efficient and reproducible when template DNA was polymerized within the gel or when exogenous template was added atop precast gel posts. PCR amplification occurred with template from purified DNA or from raw urine of patients with BK viruria. Multiple primer sets can be utilized per gel post array with no detectable cross contamination. As few as 34 BK virus templates were consistently detected by PCR in an individual gel post. Amplification of HPA1 and FGFR2 genes in human genomic DNA (gDNA) required as little as 2-5 ng of gDNA template/gel post. The device prototype includes a Peltier element for PCR thermal cycling and a CCD camera to capture fluorescence for product detection. Our technology is amenable to integration in point of care microdevices.


Malaria Journal | 2014

A lab-on-chip for malaria diagnosis and surveillance

Brian J. Taylor; Anita Howell; Kimberly A. Martin; Dammika P. Manage; Walter Gordy; Stephanie D Campbell; Samantha Lam; A. Y. Jin; Spencer D. Polley; Roshini Samuel; Alexey Atrazhev; Alex Stickel; Josephine Birungi; Anthony K. Mbonye; Linda M. Pilarski; Jason P. Acker; Stephanie K. Yanow

BackgroundAccess to timely and accurate diagnostic tests has a significant impact in the management of diseases of global concern such as malaria. While molecular diagnostics satisfy this need effectively in developed countries, barriers in technology, reagent storage, cost and expertise have hampered the introduction of these methods in developing countries. In this study a simple, lab-on-chip PCR diagnostic was created for malaria that overcomes these challenges.MethodsThe platform consists of a disposable plastic chip and a low-cost, portable, real-time PCR machine. The chip contains a desiccated hydrogel with reagents needed for Plasmodium specific PCR. Chips can be stored at room temperature and used on demand by rehydrating the gel with unprocessed blood, avoiding the need for sample preparation. These chips were run on a custom-built instrument containing a Peltier element for thermal cycling and a laser/camera setup for amplicon detection.ResultsThis diagnostic was capable of detecting all Plasmodium species with a limit of detection for Plasmodium falciparum of 2 parasites/μL of blood. This exceeds the sensitivity of microscopy, the current standard for diagnosis in the field, by ten to fifty-fold. In a blind panel of 188 patient samples from a hyper-endemic region of malaria transmission in Uganda, the diagnostic had high sensitivity (97.4%) and specificity (93.8%) versus conventional real-time PCR. The test also distinguished the two most prevalent malaria species in mixed infections, P. falciparum and Plasmodium vivax. A second blind panel of 38 patient samples was tested on a streamlined instrument with LED-based excitation, achieving a sensitivity of 96.7% and a specificity of 100%.ConclusionsThese results describe the development of a lab-on-chip PCR diagnostic from initial concept to ready-for-manufacture design. This platform will be useful in front-line malaria diagnosis, elimination programmes, and clinical trials. Furthermore, test chips can be adapted to detect other pathogens for a differential diagnosis in the field. The flexibility, reliability, and robustness of this technology hold much promise for its use as a novel molecular diagnostic platform in developing countries.


Lab on a Chip | 2013

An enclosed in-gel PCR amplification cassette with multi-target, multi-sample detection for platform molecular diagnostics

Dammika P. Manage; Jana Lauzon; Alexey Atrazev; Ravi Chavali; Roshini Samuel; Brandon Chan; Y. C. Morrissey; Walter Gordy; Ann L. Edwards; Kyle Larison; Stephanie K. Yanow; Jason P. Acker; George Zahariadis; Linda M. Pilarski

This work describes a self-contained, simple, disposable, and inexpensive gel capillary cassette for DNA amplification in near point of care settings. The cassette avoids the need for pumps or valves during raw sample delivery or polymerase chain reaction (PCR) amplification steps. The cassette contains capillary reaction units that can be stored at room temperature for up to 3 months. The current cassette configuration format simultaneously tests up to 16 patients for two or more targets, accommodates different sample types on the same cassette, has integrated positive and negative controls and allows flexibility for multiple geometries. PCR reagents in the cassette are desiccated to allow storage at room temperature with rehydration by raw sample at the time of testing. The sample is introduced to the cassette via a transfer pipette simply by capillary force. DNA amplification was carried out in a portable prototype instrument for PCR thermal cycling with fluorescence detection of amplified products by melt curve analysis (MCA). To demonstrate performance, raw genital swabs and urine were introduced to the same cassette to simultaneously detect four sexually transmitted infections. Herpes Simplex Viruses (HSV-1 and HSV-2) were detected from raw genital swabs. Ureaplasma urealyticum (UU) and Mycoplasma homonis (MH) were detected from raw urine. Results for multiple patients were obtained in as little as 50 min. This platform allows multiparameter clinical testing with a pre-assembled cassette that requires only the introduction of raw sample. Modification of the prototype device to accommodate larger cassettes will ultimately provide high throughput simultaneous testing of even larger numbers of samples for many different targets, as is required for some clinical applications. Combinations of wax and/or polymer cassettes holding capillary reaction units are feasible. The components of the cassette are suited to mass production and robotic assembly to produce a readily manufactured disposable reaction cassette that can be configured for disease-specific testing panels. Rapid testing with a disposable reaction cassette on an inexpensive instrument will enable on the spot evaluation of patients in the clinic for faster medical decision-making and more informed therapeutic choices.


Journal of Clinical Microbiology | 2010

High-Throughput Genotyping of Single Nucleotide Polymorphisms in the Plasmodium falciparum dhfr Gene by Asymmetric PCR and Melt-Curve Analysis

Rochelle E. Cruz; Sandra Shokoples; Dammika P. Manage; Stephanie K. Yanow

ABSTRACT Mutations within the Plasmodium falciparum dihydrofolate reductase gene (Pfdhfr) contribute to resistance to antimalarials such as sulfadoxine-pyrimethamine (SP). Of particular importance are the single nucleotide polymorphisms (SNPs) within codons 51, 59, 108, and 164 in the Pfdhfr gene that are associated with SP treatment failure. Given that traditional genotyping methods are time-consuming and laborious, we developed an assay that provides the rapid, high-throughput analysis of parasite DNA isolated from clinical samples. This assay is based on asymmetric real-time PCR and melt-curve analysis (MCA) performed on the LightCycler platform. Unlabeled probes specific to each SNP are included in the reaction mixture and hybridize differentially to the mutant and wild-type sequences within the amplicon, generating distinct melting curves. Since the probe is present throughout PCR and MCA, the assay proceeds seamlessly with no further addition of reagents. This assay was validated for analytical sensitivity and specificity using plasmids, purified genomic DNA from reference strains, and parasite cultures. For all four SNPs, correct genotypes were identified with 100 copies of the template. The performance of the assay was evaluated with a blind panel of clinical isolates from travelers with low-level parasitemia. The concordance between our assay and DNA sequencing ranged from 84 to 100% depending on the SNP. We also directly compared our MCA assay to a published TaqMan real-time PCR assay and identified major issues with the specificity of the TaqMan probes. Our assay provides a number of technical improvements that facilitate the high-throughput screening of patient samples to identify SP-resistant malaria.


Electrophoresis | 2012

Millimeter scale separation of DNA with a replaceable polymer matrix

Dammika P. Manage; Duncan G. Elliott; Christopher J. Backhouse

Electrophoresis is a powerful method that has seen a wide range of applications, often in automated genetic diagnostic instruments that require the use of a replaceable sieving matrix. The power and simplicity of electrophoresis as an analysis technique would be ideal for highly integrated and low‐cost analysis systems if the method could be implemented in microfluidics on the scale of several mm. We demonstrate the electrophoretic analysis of DNA with separation lengths as small as 2 mm and with a resolution adequate for the analysis of PCR products, i.e. resolutions of 10–20 base pairs. Such small‐scale separations enable analysis systems consisting of microfluidics and microelectronics integrated into a single inexpensive package, thereby overcoming a key challenge facing the development of the lab on chip technologies.


Journal of Nanobiotechnology | 2005

Rapid self-assembly of DNA on a microfluidic chip

Yao Zheng; Tim Footz; Dammika P. Manage; Christopher J. Backhouse

BackgroundDNA self-assembly methods have played a major role in enabling methods for acquiring genetic information without having to resort to sequencing, a relatively slow and costly procedure. However, even self-assembly processes tend to be very slow when they rely upon diffusion on a large scale. Miniaturisation and integration therefore hold the promise of greatly increasing this speed of operation.ResultsWe have developed a rapid method for implementing the self-assembly of DNA within a microfluidic system by electrically extracting the DNA from an environment containing an uncharged denaturant. By controlling the parameters of the electrophoretic extraction and subsequent analysis of the DNA we are able to control when the hybridisation occurs as well as the degree of hybridisation. By avoiding off-chip processing or long thermal treatments we are able to perform this hybridisation rapidly and can perform hybridisation, sizing, heteroduplex analysis and single-stranded conformation analysis within a matter of minutes. The rapidity of this analysis allows the sampling of transient effects that may improve the sensitivity of mutation detection.ConclusionsWe believe that this method will aid the integration of self-assembly methods upon microfluidic chips. The speed of this analysis also appears to provide information upon the dynamics of the self-assembly process.


Electrophoresis | 2008

A microfluidic study of mechanisms in the electrophoresis of supercoiled DNA

Dammika P. Manage; Iveta Imriskova‐Sosova; D. Moira Glerum; Christopher J. Backhouse

In this work, microfluidic chips were used to study the electrophoresis of supercoiled DNA (SC DNA) in agarose. This system allowed us to study the electrophoretic and trapping behaviours of SC DNA of various lengths, at various fields and separation distances. Near a critical electric field the DNA is trapped such that the concentration falls exponentially with distance. The trapping of such circular DNA has been explained in terms of the ‘lobster trap’ or ‘impalement’ model where shorter fibres become trapping sites at higher fields, leading to an ongoing (and gradual) increase in trapping with increasing field. By contrast, the present study suggests that under some circumstances the traps have a barrier such that only when the DNA has sufficient energy (at high enough fields) can it become trapped, leading to a sudden transition in behaviours at the critical field. We propose an ‘activated impalement’ mechanism of trapping in which only at sufficiently high fields is the SC DNA impaled and trapped for long times. The critical electric field appears to be inversely proportional to the length of the DNA molecule, suggesting that the force required to impale the SC DNA is constant.


PLOS ONE | 2018

Monitoring food pathogens: Novel instrumentation for cassette PCR testing

Darin Hunt; Curtis Figley; Dammika P. Manage; Jana Lauzon; Rachel Figley; Linda M. Pilarski; Lynn M. McMullen; Patrick M. Pilarski

In this manuscript, we report the design and development of a fast, reliable instrument to run gel-based cassette polymerase chain reactions (PCR). Here termed the GelCycler Mark II, our instrument is a miniaturized molecular testing system that is fast, low cost and sensitive. Cassette PCR utilizes capillary reaction units that carry all reagents needed for PCR, including primers and Taq polymerase, except the sample, which is loaded at the time of testing. Cassette PCR carries out real time quantitative PCR followed by melt curve analysis (MCA) to verify amplicon identity at the expected melt temperature (Tm). The cassette PCR technology is well developed, particularly for detecting pathogens, and has been rigorously validated for detecting pathogenic Escherichia coli in meat samples. However, the work has been hindered by the lack of a robust and stable instrument to carry out the PCR, which requires fast and accurate temperature regulation, improved light delivery and fluorescent recording, and faster PCR reactions that maintain a high sensitivity of detection. Here, we report design and testing of a new instrument to address these shortcomings and to enable standardized testing by cassette PCR and commercial manufacture of a robust and accurate instrument that can be mass produced to deliver consistent performance. As a corollary to our new instrument development, we also report the use of an improved design approach using a machined aluminum cassette to meet the new instrument standards, prevent any light bleed across different trenches in each cassette, and allow testing of a larger number of samples for more targets in a single run. The GelCycler Mark II can detect and report E. coli contamination in 41 minutes. Sample positives are defined in as having a melt curve comparable to the internal positive control, with peak height exceeding that of the internal negative control. In a fractional analysis, as little as 1 bacterium per capillary reaction unit is directly detectable, with no enrichment step, in 35 cycles of PCR/MCA, in a total time of 53 minutes, making this instrument and technology among the very best for speed and sensitivity in screening food for pathogenic contamination.


Analyst | 2008

An inexpensive and portable microchip-based platform for integrated RT–PCR and capillary electrophoresis

Govind V. Kaigala; Viet N. Hoang; Alex Stickel; Jana Lauzon; Dammika P. Manage; Linda M. Pilarski; Christopher J. Backhouse


Microfluidics and Nanofluidics | 2005

On-chip HA/SSCP for the detection of hereditary haemochromatosis

Dammika P. Manage; Yao Zheng; Martin J. Somerville; Christopher J. Backhouse

Collaboration


Dive into the Dammika P. Manage's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jana Lauzon

Cross Cancer Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yao Zheng

University of Alberta

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge