Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Damon A. Clark is active.

Publication


Featured researches published by Damon A. Clark.


Nature | 2001

Scalable architecture in mammalian brains

Damon A. Clark; Partha P. Mitra; Samuel S.-H. Wang

Comparison of mammalian brain parts has often focused on differences in absolute size, revealing only a general tendency for all parts to grow together. Attempts to find size-independent effects using body weight as a reference variable obscure size relationships owing to independent variation of body size and give phylogenies of questionable significance. Here we use the brain itself as a size reference to define the cerebrotype, a species-by-species measure of brain composition. With this measure, across many mammalian taxa the cerebellum occupies a constant fraction of the total brain volume (0.13 ± 0.02), arguing against the hypothesis that the cerebellum acts as a computational engine principally serving the neocortex. Mammalian taxa can be well separated by cerebrotype, thus allowing the use of quantitative neuroanatomical data to test evolutionary relationships. Primate cerebrotypes have progressively shifted and neocortical volume fractions have become successively larger in lemurs and lorises, New World monkeys, Old World monkeys, and hominoids, lending support to the idea that primate brain architecture has been driven by directed selection pressure. At the same time, absolute brain size can vary over 100-fold within a taxon, while maintaining a relatively uniform cerebrotype. Brains therefore constitute a scalable architecture.


The Journal of Neuroscience | 2006

The AFD Sensory Neurons Encode Multiple Functions Underlying Thermotactic Behavior in Caenorhabditis elegans

Damon A. Clark; David Biron; Piali Sengupta; Aravinthan D. T. Samuel

The thermotactic behaviors of Caenorhabditis elegans indicate that its thermosensory system exhibits exquisite temperature sensitivity, long-term plasticity, and the ability to transform thermosensory input into different patterns of motor output. Here, we study the physiological role of the AFD thermosensory neurons by quantifying intracellular calcium dynamics in response to defined temperature stimuli. We demonstrate that short-term adaptation allows AFD to sense temperature changes as small as 0.05°C over temperature ranges as wide as 10°C. We show that a bidirectional thermosensory response (increasing temperature raises and decreasing temperature lowers the level of intracellular calcium in AFD) allows the AFD neurons to phase-lock their calcium dynamics to oscillatory thermosensory inputs. By analyzing the thermosensory response of AFD dendrites severed from their cell bodies by femtosecond laser ablation, we show that long-term plasticity is encoded as shifts in the operating range of a putative thermoreceptor(s) in the AFD sensory endings. Finally, we demonstrate that AFD activity is directly coupled to stimulation of its postsynaptic partner AIY. These observations indicate that many functions underlying thermotactic behavior are properties of one sensory neuronal type. Encoding multiple functions in individual sensory neurons may enable C. elegans to perform complex behaviors with simple neuronal circuits.


BMC Neuroscience | 2006

The role of the AFD neuron in C. elegans thermotaxis analyzed using femtosecond laser ablation

Samuel H. Chung; Damon A. Clark; Christopher V. Gabel; Eric Mazur; Aravinthan D. T. Samuel

BackgroundCaenorhabditis elegans actively crawls down thermal gradients until it reaches the temperature of its prior cultivation, exhibiting what is called cryophilic movement. Implicit in the worms performance of cryophilic movement is the ability to detect thermal gradients, and implicit in regulating the performance of cryophilic movement is the ability to compare the current temperature of its surroundings with a stored memory of its cultivation temperature. Several lines of evidence link the AFD sensory neuron to thermotactic behavior, but its precise role is unclear. A current model contends that AFD is part of a thermophilic mechanism for biasing the worms movement up gradients that counterbalances the cryophilic mechanism for biasing its movement down gradients.ResultsWe used tightly-focused femtosecond laser pulses to dissect the AFD neuronal cell bodies and the AFD sensory dendrites in C. elegans to investigate their contribution to cryophilic movement. We establish that femtosecond laser ablation can exhibit submicrometer precision, severing individual sensory dendrites without causing collateral damage. We show that severing the dendrites of sensory neurons in young adult worms permanently abolishes their sensory contribution without functional regeneration. We show that the AFD neuron regulates a mechanism for generating cryophilic bias, but we find no evidence that AFD laser surgery reduces a putative ability to generate thermophilic bias. In addition, although disruption of the AIY interneuron causes worms to exhibit cryophilic bias at all temperatures, we find no evidence that laser killing the AIZ interneuron causes thermophilic bias at any temperature.ConclusionWe conclude that laser surgical analysis of the neural circuit for thermotaxis does not support a model in which AFD opposes cryophilic bias by generating thermophilic bias. Our data supports a model in which the AFD neuron gates a mechanism for generating cryophilic bias.


Nature | 2014

Processing properties of ON and OFF pathways for Drosophila motion detection

Rudy Behnia; Damon A. Clark; Adam G. Carter; Thomas R. Clandinin; Claude Desplan

The algorithms and neural circuits that process spatio-temporal changes in luminance to extract visual motion cues have been the focus of intense research. An influential model, the Hassenstein–Reichardt correlator, relies on differential temporal filtering of two spatially separated input channels, delaying one input signal with respect to the other. Motion in a particular direction causes these delayed and non-delayed luminance signals to arrive simultaneously at a subsequent processing step in the brain; these signals are then nonlinearly amplified to produce a direction-selective response. Recent work in Drosophila has identified two parallel pathways that selectively respond to either moving light or dark edges. Each of these pathways requires two critical processing steps to be applied to incoming signals: differential delay between the spatial input channels, and distinct processing of brightness increment and decrement signals. Here we demonstrate, using in vivo patch-clamp recordings, that four medulla neurons implement these two processing steps. The neurons Mi1 and Tm3 respond selectively to brightness increments, with the response of Mi1 delayed relative to Tm3. Conversely, Tm1 and Tm2 respond selectively to brightness decrements, with the response of Tm1 delayed compared with Tm2. Remarkably, constraining Hassenstein–Reichardt correlator models using these measurements produces outputs consistent with previously measured properties of motion detectors, including temporal frequency tuning and specificity for light versus dark edges. We propose that Mi1 and Tm3 perform critical processing of the delayed and non-delayed input channels of the correlator responsible for the detection of light edges, while Tm1 and Tm2 play analogous roles in the detection of moving dark edges. Our data show that specific medulla neurons possess response properties that allow them to implement the algorithmic steps that precede the correlative operation in the Hassenstein–Reichardt correlator, revealing elements of the long-sought neural substrates of motion detection in the fly.


The Journal of Experimental Biology | 2007

Mechanosensation and mechanical load modulate the locomotory gait of swimming C. elegans

Jeremie Korta; Damon A. Clark; Christopher V. Gabel; L. Mahadevan; Aravinthan D. T. Samuel

SUMMARY Animals move through their environments by selecting gaits that are adapted to the physical nature of their surroundings. The nematode Caenorhabditis elegans swims through fluids or crawls on surfaces by propagating flexural waves along its slender body and offers a unique opportunity for detailed analysis of locomotory gait at multiple levels including kinematics, biomechanics and the molecular and physiological operation of sensory and motor systems. Here, we study the swimming gait of C. elegans in viscous fluids in the range 0.05-50 Pa s. We find that the spatial form of the swimming gait does not vary across this range of viscosities and that the temporal frequency of the swimming gait only decreases by about 20% with every 10-fold increase in viscosity. Thus, C. elegans swims in low gear, such that its musculature can deliver mechanical force and power nearly 1000-fold higher than it delivers when swimming in water. We find that mutations that disrupt mechanosensation, or the laser killing of specific touch receptor neurons, increase the temporal frequency of the undulating gait, revealing a novel effect of mechanosensory input in regulating the putative central pattern generator that produces locomotion. The adaptability of locomotory gait in C. elegans may be encoded in sensory and motor systems that allow the worm to respond to its own movement in different physical surroundings.


The Journal of Neuroscience | 2007

Temporal Activity Patterns in Thermosensory Neurons of Freely Moving Caenorhabditis elegans Encode Spatial Thermal Gradients

Damon A. Clark; Christopher V. Gabel; Harrison Gabel; Aravinthan D. T. Samuel

Our understanding of the operation of neurons and neuronal circuits has come primarily from probing their activity in dissected, anesthetized, or restrained animals. However, the behaviorally relevant operation of neurons and neuronal circuits occurs within intact animals as they freely perform behavioral tasks. The small size and transparency of the nematode Caenorhabditis elegans make it an ideal system for noninvasive, optical measurements of neuronal activity. Here, we use a high signal-to-noise version of cameleon, a fluorescent calcium-binding protein, to quantify the activity of the AFD thermosensory neuron of individual worms freely navigating spatial thermal gradients. We find that AFD activity is directly coupled to the worms exploratory movements in spatial thermal gradients. We show that the worm is able, in principle, to evaluate and guide its own thermotactic behaviors with respect to ambient spatial thermal gradients by monitoring the activity of this single thermosensory neuron.


Nature Neuroscience | 2006

A diacylglycerol kinase modulates long-term thermotactic behavioral plasticity in C. elegans

David Biron; Mayumi Shibuya; Christopher V. Gabel; Sara Wasserman; Damon A. Clark; Adam Brown; Piali Sengupta; Aravinthan D. T. Samuel

A memory of prior thermal experience governs Caenorhabditis elegans thermotactic behavior. On a spatial thermal gradient, C. elegans tracks isotherms near a remembered temperature we call the thermotactic set-point (TS). The TS corresponds to the previous cultivation temperature and can be reset by sustained exposure to a new temperature. The mechanisms underlying this behavioral plasticity are unknown, partly because sensory and experience-dependent components of thermotactic behavior have been difficult to separate. Using newly developed quantitative behavioral analyses, we demonstrate that the TS represents a weighted average of a worms temperature history. We identify the DGK-3 diacylglycerol kinase as a thermal memory molecule that regulates the rate of TS resetting by modulating the temperature range of synaptic output, but not temperature sensitivity, of the AFD thermosensory neurons. These results provide the first mechanistic insight into the basis of experience-dependent plasticity in this complex behavior.


Neuron | 2013

Modular Use of Peripheral Input Channels Tunes Motion-Detecting Circuitry

Marion Silies; Daryl M. Gohl; Yvette E. Fisher; Limor Freifeld; Damon A. Clark; Thomas R. Clandinin

In the visual system, peripheral processing circuits are often tuned to specific stimulus features. How this selectivity arises and how these circuits are organized to inform specific visual behaviors is incompletely understood. Using forward genetics and quantitative behavioral studies, we uncover an input channel to motion detecting circuitry in Drosophila. The second-order neuron L3 acts combinatorially with two previously known inputs, L1 and L2, to inform circuits specialized to detect moving light and dark edges. In vivo calcium imaging of L3, combined with neuronal silencing experiments, suggests a neural mechanism to achieve selectivity for moving dark edges. We further demonstrate that different innate behaviors, turning and forward movement, can be independently modulated by visual motion. These two behaviors make use of different combinations of input channels. Such modular use of input channels to achieve feature extraction and behavioral specialization likely represents a general principle in sensory systems.


The Journal of Neuroscience | 2007

Neural Circuits Mediate Electrosensory Behavior in Caenorhabditis elegans

Christopher V. Gabel; Harrison Gabel; Dmitri Pavlichin; Albert Kao; Damon A. Clark; Aravinthan D. T. Samuel

The nematode Caenorhabditis elegans deliberately crawls toward the negative pole in an electric field. By quantifying the movements of individual worms navigating electric fields, we show that C. elegans prefers to crawl at specific angles to the direction of the electric field in persistent periods of forward movement and that the preferred angle is proportional to field strength. C. elegans reorients itself in response to time-varying electric fields by using sudden turns and reversals, standard reorientation maneuvers that C. elegans uses during other modes of motile behavior. Mutation or laser ablation that disrupts the structure and function of amphid sensory neurons also disrupts electrosensory behavior. By imaging intracellular calcium dynamics among the amphid sensory neurons of immobilized worms, we show that specific amphid sensory neurons are sensitive to the direction and strength of electric fields. We extend our analysis to the motor level by showing that specific interneurons affect the utilization of sudden turns and reversals during electrosensory steering. Thus, electrosensory behavior may be used as a model system for understanding how sensory inputs are transformed into motor outputs by the C. elegans nervous system.


Current Biology | 2012

Genetic Dissection Reveals Two Separate Retinal Substrates for Polarization Vision in Drosophila

Mathias F. Wernet; Mariel M. Velez; Damon A. Clark; Franziska Baumann-Klausener; Julian R. Brown; Martha Klovstad; Thomas Labhart; Thomas R. Clandinin

BACKGROUND Linearly polarized light originates from atmospheric scattering or surface reflections and is perceived by insects, spiders, cephalopods, crustaceans, and some vertebrates. Thus, the neural basis underlying how this fundamental quality of light is detected is of broad interest. Morphologically unique, polarization-sensitive ommatidia exist in the dorsal periphery of many insect retinas, forming the dorsal rim area (DRA). However, much less is known about the retinal substrates of behavioral responses to polarized reflections. SUMMARY Drosophila exhibits polarotactic behavior, spontaneously aligning with the e-vector of linearly polarized light, when stimuli are presented either dorsally or ventrally. By combining behavioral experiments with genetic dissection and ultrastructural analyses, we show that distinct photoreceptors mediate the two behaviors: inner photoreceptors R7+R8 of DRA ommatidia are necessary and sufficient for dorsal polarotaxis, whereas ventral responses are mediated by combinations of outer and inner photoreceptors, both of which manifest previously unknown features that render them polarization sensitive. CONCLUSIONS Drosophila uses separate retinal pathways for the detection of linearly polarized light emanating from the sky or from shiny surfaces. This work establishes a behavioral paradigm that will enable genetic dissection of the circuits underlying polarization vision.

Collaboration


Dive into the Damon A. Clark's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

B. Abbott

University of Oklahoma

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. Gray

National Science Foundation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. C. Coyne

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge