Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher V. Gabel is active.

Publication


Featured researches published by Christopher V. Gabel.


Biophysical Journal | 2003

Parallel Microchannel-Based Measurements of Individual Erythrocyte Areas and Volumes

Sean C. Gifford; Michael G. Frank; Jure Derganc; Christopher V. Gabel; Robert H. Austin; Tatsuro Yoshida; Mark W. Bitensky

We describe a microchannel device which utilizes a novel approach to obtain area and volume measurements on many individual red blood cells. Red cells are aspirated into the microchannels much as a single red blood cell is aspirated into a micropipette. Inasmuch as there are thousands of identical microchannels with defined geometry, data for many individual red cells can be rapidly acquired, and the fundamental heterogeneity of cell membrane biophysics can be analyzed. Fluorescent labels can be used to quantify red cell surface and cytosolic features of interest simultaneously with the measurement of area and volume for a given cell. Experiments that demonstrate and evaluate the microchannel measuring capabilities are presented and potential improvements and extensions are discussed.


Current Biology | 2004

Identification of thermosensory and olfactory neuron-specific genes via expression profiling of single neuron types

Marc E. Colosimo; Adam Brown; Saikat Mukhopadhyay; Christopher V. Gabel; Anne Lanjuin; Aravinthan D. T. Samuel; Piali Sengupta

Most C. elegans sensory neuron types consist of a single bilateral pair of neurons, and respond to a unique set of sensory stimuli. Although genes required for the development and function of individual sensory neuron types have been identified in forward genetic screens, these approaches are unlikely to identify genes that when mutated result in subtle or pleiotropic phenotypes. Here, we describe a complementary approach to identify sensory neuron type-specific genes via microarray analysis using RNA from sorted AWB olfactory and AFD thermosensory neurons. The expression patterns of subsets of these genes were further verified in vivo. Genes identified by this analysis encode 7-transmembrane receptors, kinases, and nuclear factors including dac-1, which encodes a homolog of the highly conserved Dachshund protein. dac-1 is expressed in a subset of sensory neurons including the AFD neurons and is regulated by the TTX-1 OTX homeodomain protein. On thermal gradients, dac-1 mutants fail to suppress a cryophilic drive but continue to track isotherms at the cultivation temperature, representing the first genetic separation of these AFD-mediated behaviors. Expression profiling of single neuron types provides a rapid, powerful, and unbiased method for identifying neuron-specific genes whose functions can then be investigated in vivo.


BMC Neuroscience | 2006

The role of the AFD neuron in C. elegans thermotaxis analyzed using femtosecond laser ablation

Samuel H. Chung; Damon A. Clark; Christopher V. Gabel; Eric Mazur; Aravinthan D. T. Samuel

BackgroundCaenorhabditis elegans actively crawls down thermal gradients until it reaches the temperature of its prior cultivation, exhibiting what is called cryophilic movement. Implicit in the worms performance of cryophilic movement is the ability to detect thermal gradients, and implicit in regulating the performance of cryophilic movement is the ability to compare the current temperature of its surroundings with a stored memory of its cultivation temperature. Several lines of evidence link the AFD sensory neuron to thermotactic behavior, but its precise role is unclear. A current model contends that AFD is part of a thermophilic mechanism for biasing the worms movement up gradients that counterbalances the cryophilic mechanism for biasing its movement down gradients.ResultsWe used tightly-focused femtosecond laser pulses to dissect the AFD neuronal cell bodies and the AFD sensory dendrites in C. elegans to investigate their contribution to cryophilic movement. We establish that femtosecond laser ablation can exhibit submicrometer precision, severing individual sensory dendrites without causing collateral damage. We show that severing the dendrites of sensory neurons in young adult worms permanently abolishes their sensory contribution without functional regeneration. We show that the AFD neuron regulates a mechanism for generating cryophilic bias, but we find no evidence that AFD laser surgery reduces a putative ability to generate thermophilic bias. In addition, although disruption of the AIY interneuron causes worms to exhibit cryophilic bias at all temperatures, we find no evidence that laser killing the AIZ interneuron causes thermophilic bias at any temperature.ConclusionWe conclude that laser surgical analysis of the neural circuit for thermotaxis does not support a model in which AFD opposes cryophilic bias by generating thermophilic bias. Our data supports a model in which the AFD neuron gates a mechanism for generating cryophilic bias.


PLOS ONE | 2013

Long-Term Imaging of Caenorhabditis elegans Using Nanoparticle-Mediated Immobilization

Eric Kim; Lin Sun; Christopher V. Gabel; Christopher Fang-Yen

One advantage of the nematode Caenorhabditis elegans as a model organism is its suitability for in vivo optical microscopy. Imaging C. elegans often requires animals to be immobilized to avoid movement-related artifacts. Immobilization has been performed by application of anesthetics or by introducing physical constraints using glue or specialized microfluidic devices. Here we present a method for immobilizing C. elegans using polystyrene nanoparticles and agarose pads. Our technique is technically simple, does not expose the worm to toxic substances, and allows recovery of animals. We evaluate the method and show that the polystyrene beads increase friction between the worm and agarose pad. We use our method to quantify calcium transients and long-term regrowth in single neurons following axotomy by a femtosecond laser.


The Journal of Experimental Biology | 2007

Mechanosensation and mechanical load modulate the locomotory gait of swimming C. elegans

Jeremie Korta; Damon A. Clark; Christopher V. Gabel; L. Mahadevan; Aravinthan D. T. Samuel

SUMMARY Animals move through their environments by selecting gaits that are adapted to the physical nature of their surroundings. The nematode Caenorhabditis elegans swims through fluids or crawls on surfaces by propagating flexural waves along its slender body and offers a unique opportunity for detailed analysis of locomotory gait at multiple levels including kinematics, biomechanics and the molecular and physiological operation of sensory and motor systems. Here, we study the swimming gait of C. elegans in viscous fluids in the range 0.05-50 Pa s. We find that the spatial form of the swimming gait does not vary across this range of viscosities and that the temporal frequency of the swimming gait only decreases by about 20% with every 10-fold increase in viscosity. Thus, C. elegans swims in low gear, such that its musculature can deliver mechanical force and power nearly 1000-fold higher than it delivers when swimming in water. We find that mutations that disrupt mechanosensation, or the laser killing of specific touch receptor neurons, increase the temporal frequency of the undulating gait, revealing a novel effect of mechanosensory input in regulating the putative central pattern generator that produces locomotion. The adaptability of locomotory gait in C. elegans may be encoded in sensory and motor systems that allow the worm to respond to its own movement in different physical surroundings.


Development | 2008

Distinct cellular and molecular mechanisms mediate initial axon development and adult-stage axon regeneration in C. elegans

Christopher V. Gabel; Faustine Antoine; Chiou-Fen Chuang; Aravinthan D. T. Samuel; Chieh Chang

The molecular and cellular mechanisms that allow adult-stage neurons to regenerate following damage are poorly understood. Recently, axons of motoneurons and mechanosensory neurons in adult C. elegans were found to regrow after being snipped by femtosecond laser ablation. Here, we explore the molecular determinants of adult-stage axon regeneration using the AVM mechanosensory neurons. The first step in AVM axon development is a pioneer axonal projection from the cell body to the ventral nerve cord. We show that regeneration of the AVM axon to the ventral nerve cord lacks the deterministic precision of initial axon development, requiring competition and pruning of unwanted axon branches. Nevertheless, axons of injured AVM neurons regrow to the ventral nerve cord with over 60% reliability in adult animals. In addition, in contrast to initial development, axon guidance during regeneration becomes heavily dependent on cytoplasmic protein MIG-10/Lamellipodin but independent of UNC-129/TGF-β repellent and UNC-40/DCC receptor, and axon growth during regeneration becomes heavily dependent on UNC-34/Ena and CED-10/Rac actin regulators. Thus, C. elegans may be used as a genetic system to characterize novel cellular and molecular mechanisms underlying adult-stage nervous system regeneration.


Proceedings of the National Academy of Sciences of the United States of America | 2003

The speed of the flagellar rotary motor of Escherichia coli varies linearly with protonmotive force

Christopher V. Gabel; Howard C. Berg

A protonmotive force (pmf) across the cells inner membrane powers the flagellar rotary motor of Escherichia coli. Speed is known to be proportional to pmf when viscous loads are heavy. Here we show that speed also is proportional to pmf when viscous loads are light. Two motors on the same bacterium were monitored as the cell was slowly deenergized. The first motor rotated the entire cell body (a heavy load), while the second motor rotated a small latex bead (a light load). The first motor rotated slowly and provided a measure of the cells pmf. The second motor rotated rapidly and was compared with the first, to give the speed–pmf relation for light loads. Experiments were done at 24.0°C and 16.2°C, with initial speeds indicating operation well into the high-speed, low-torque regime. Speed was found to be proportional to pmf over the entire (accessible) dynamic range (0–270 Hz). If the passage of a fixed number of protons carries the motor through each revolution, i.e., if the motor is tightly coupled, a linear speed–pmf relation is expected close to stall, where the work done against the viscous load matches the energy dissipated in proton flow. A linear relation is expected at high speeds if proton translocation is rate-limiting and involves multiple steps, a model that also applies to simple proton channels. The present work shows that a linear relation is true more generally, providing an additional constraint on possible motor mechanisms.


Neuron | 2010

Functional Organization of a Neural Network for Aversive Olfactory Learning in Caenorhabditis elegans

Heonick Ha; Michael Hendricks; Yu Shen; Christopher V. Gabel; Christopher Fang-Yen; Yuqi Qin; Daniel A. Colón-Ramos; Kang Shen; Aravinthan D. T. Samuel; Yun Zhang

Many animals use their olfactory systems to learn to avoid dangers, but how neural circuits encode naive and learned olfactory preferences, and switch between those preferences, is poorly understood. Here, we map an olfactory network, from sensory input to motor output, which regulates the learned olfactory aversion of Caenorhabditis elegans for the smell of pathogenic bacteria. Naive animals prefer smells of pathogens but animals trained with pathogens lose this attraction. We find that two different neural circuits subserve these preferences, with one required for the naive preference and the other specifically for the learned preference. Calcium imaging and behavioral analysis reveal that the naive preference reflects the direct transduction of the activity of olfactory sensory neurons into motor response, whereas the learned preference involves modulations to signal transduction to downstream neurons to alter motor response. Thus, two different neural circuits regulate a behavioral switch between naive and learned olfactory preferences.


The Journal of Neuroscience | 2007

Temporal Activity Patterns in Thermosensory Neurons of Freely Moving Caenorhabditis elegans Encode Spatial Thermal Gradients

Damon A. Clark; Christopher V. Gabel; Harrison Gabel; Aravinthan D. T. Samuel

Our understanding of the operation of neurons and neuronal circuits has come primarily from probing their activity in dissected, anesthetized, or restrained animals. However, the behaviorally relevant operation of neurons and neuronal circuits occurs within intact animals as they freely perform behavioral tasks. The small size and transparency of the nematode Caenorhabditis elegans make it an ideal system for noninvasive, optical measurements of neuronal activity. Here, we use a high signal-to-noise version of cameleon, a fluorescent calcium-binding protein, to quantify the activity of the AFD thermosensory neuron of individual worms freely navigating spatial thermal gradients. We find that AFD activity is directly coupled to the worms exploratory movements in spatial thermal gradients. We show that the worm is able, in principle, to evaluate and guide its own thermotactic behaviors with respect to ambient spatial thermal gradients by monitoring the activity of this single thermosensory neuron.


Nature Neuroscience | 2006

A diacylglycerol kinase modulates long-term thermotactic behavioral plasticity in C. elegans

David Biron; Mayumi Shibuya; Christopher V. Gabel; Sara Wasserman; Damon A. Clark; Adam Brown; Piali Sengupta; Aravinthan D. T. Samuel

A memory of prior thermal experience governs Caenorhabditis elegans thermotactic behavior. On a spatial thermal gradient, C. elegans tracks isotherms near a remembered temperature we call the thermotactic set-point (TS). The TS corresponds to the previous cultivation temperature and can be reset by sustained exposure to a new temperature. The mechanisms underlying this behavioral plasticity are unknown, partly because sensory and experience-dependent components of thermotactic behavior have been difficult to separate. Using newly developed quantitative behavioral analyses, we demonstrate that the TS represents a weighted average of a worms temperature history. We identify the DGK-3 diacylglycerol kinase as a thermal memory molecule that regulates the rate of TS resetting by modulating the temperature range of synaptic output, but not temperature sensitivity, of the AFD thermosensory neurons. These results provide the first mechanistic insight into the basis of experience-dependent plasticity in this complex behavior.

Collaboration


Dive into the Christopher V. Gabel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge