Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dan G. Bock is active.

Publication


Featured researches published by Dan G. Bock.


Current Biology | 2014

The availability of research data declines rapidly with article age.

Timothy H. Vines; Arianne Y. K. Albert; Rose L. Andrew; Florence Débarre; Dan G. Bock; Michelle T. Franklin; Kimberly J. Gilbert; Jean-Sébastien Moore; Sébastien Renaut; Diana J. Rennison

Policies ensuring that research data are available on public archives are increasingly being implemented at the government [1], funding agency [2-4], and journal [5, 6] level. These policies are predicated on the idea that authors are poor stewards of their data, particularly over the long term [7], and indeed many studies have found that authors are often unable or unwilling to share their data [8-11]. However, there are no systematic estimates of how the availability of research data changes with time since publication. We therefore requested data sets from a relatively homogenous set of 516 articles published between 2 and 22 years ago, and found that availability of the data was strongly affected by article age. For papers where the authors gave the status of their data, the odds of a data set being extant fell by 17% per year. In addition, the odds that we could find a working e-mail address for the first, last, or corresponding author fell by 7% per year. Our results reinforce the notion that, in the long term, research data cannot be reliably preserved by individual researchers, and further demonstrate the urgent need for policies mandating data sharing via public archives.


Evolutionary Applications | 2016

Hybridization and extinction

Marco Todesco; Mariana A. Pascual; Gregory L. Owens; Katherine L. Ostevik; Brook T. Moyers; Sariel Hübner; Sylvia M. Heredia; Min A. Hahn; Celine Caseys; Dan G. Bock; Loren H. Rieseberg

Hybridization may drive rare taxa to extinction through genetic swamping, where the rare form is replaced by hybrids, or by demographic swamping, where population growth rates are reduced due to the wasteful production of maladaptive hybrids. Conversely, hybridization may rescue the viability of small, inbred populations. Understanding the factors that contribute to destructive versus constructive outcomes of hybridization is key to managing conservation concerns. Here, we survey the literature for studies of hybridization and extinction to identify the ecological, evolutionary, and genetic factors that critically affect extinction risk through hybridization. We find that while extinction risk is highly situation dependent, genetic swamping is much more frequent than demographic swamping. In addition, human involvement is associated with increased risk and high reproductive isolation with reduced risk. Although climate change is predicted to increase the risk of hybridization‐induced extinction, we find little empirical support for this prediction. Similarly, theoretical and experimental studies imply that genetic rescue through hybridization may be equally or more probable than demographic swamping, but our literature survey failed to support this claim. We conclude that halting the introduction of hybridization‐prone exotics and restoring mature and diverse habitats that are resistant to hybrid establishment should be management priorities.


The FASEB Journal | 2013

Mandated data archiving greatly improves access to research data

Timothy H. Vines; Rose L. Andrew; Dan G. Bock; Michelle T. Franklin; Kimberly J. Gilbert; Nolan C. Kane; Jean-Sébastien Moore; Brook T. Moyers; Sébastien Renaut; Diana J. Rennison; Thor Veen; Sam Yeaman

The data underlying scientific papers should be accessible to researchers both now and in the future, but how best can we ensure that these data are available? Here we examine the effectiveness of four approaches to data archiving: no stated archiving policy, recommending (but not requiring) archiving, and two versions of mandating data deposition at acceptance. We control for differences between data types by trying to obtain data from papers that use a single, widespread population genetic analysis, structure. At one extreme, we found that mandated data archiving policies that require the inclusion of a data availability statement in the manuscript improve the odds of finding the data online almost 1000‐fold compared to having no policy. However, archiving rates at journals with less stringent policies were only very slightly higher than those with no policy at all. We also assessed the effectiveness of asking for data directly from authors and obtained over half of the requested datasets, albeit with ~8 d delay and some disagreement with authors. Given the long‐term benefits of data accessibility to the academic community, we believe that journal‐based mandatory data archiving policies and mandatory data availability statements should be more widely adopted.—Vines, T. H., Andrew, R. L., Bock, D. G., Franklin, M. T., Gilbert, K. J., Kane, N. C., Moore, J‐S., Moyers, B. T., Renaut, S., Rennison, D. J., Veen, T., Yeaman, S. Mandated data archiving greatly improves access to research data. FASEB J. 27, 1304–1308 (2013). www.fasebj.org


Proceedings of the Royal Society of London. Series B, Biological Sciences | 2012

Multilocus genetic analyses differentiate between widespread and spatially restricted cryptic species in a model ascidian

Dan G. Bock; Hugh J. MacIsaac; Melania E. Cristescu

Elucidating the factors that shape species distributions has long been a fundamental goal in ecology and evolutionary biology. In spite of significant theoretical advancements, empirical studies of range limits have lagged behind. Specifically, little is known about how the attributes that allow species to expand their ranges and become widespread vary across phylogenies. Here, we studied the ascidian Botryllus schlosseri, a worldwide invasive species that is also characterized by marked genetic subdivision. Our study includes phylogenetic and population genetic data based on mitochondrial and nuclear genes, as well as polymorphic microsatellites for B. schlosseri colonies sampled from the southern and northern coasts of Europe and the eastern and western coasts of North America. We demonstrate that this well-known model organism comprises three highly divergent and probably reproductively isolated cryptic species (A, D and E), with two more (B and C) being suggested by data retrieved from GenBank. Among these, species A, recovered in all of the surveyed regions, is by far the most common and widespread. By contrast, species B–E, occurring mostly in sites from northern Europe, are considerably more geographically restricted. These findings, along with inferences made on transport opportunity, suggest that divergent evolutionary histories promoted differences in invasive potential between B. schlosseri sibling species, indicating that attributes that facilitate dramatic shifts in range limits can evolve more easily and frequently than previously thought. We propose environmental disturbance as a selective force that could have shaped the evolution of invasiveness in the B. schlosseri complex.


Molecular Ecology | 2011

Looking at both sides of the invasion: patterns of colonization in the violet tunicate Botrylloides violaceus

Dan G. Bock; Aibin Zhan; C. Lejeusne; Hugh J. MacIsaac; Melania E. Cristescu

Understanding the ecological and evolutionary forces that shape the genetic structure of invasive populations and facilitate their expansion across a large spectrum of environments is critical for the prediction of spread and management of ongoing invasions. Here, we study the dynamics of postestablishment colonization in the colonial ascidian Botrylloides violaceus, a notorious marine invader. After its initial introduction from the Northwest Pacific, B. violaceus spread rapidly along the Pacific and Atlantic coasts of North America, impacting both aquaculture facilities and natural ecosystems. We compare genetic diversity and patterns of gene flow among 25 populations (N = 679) from the West and East coasts, and evaluate the contribution of sexual vs. asexual reproduction to this species’ invasion success using data from the mitochondrial cytochrome c oxidase subunit I (COI) gene and 13 nuclear polymorphic microsatellite loci. Our results reveal contrasting patterns of spread in the coastal waters of North America. While the West coast was colonized by noncontiguous (long‐distance) dispersal, the East coast invasion appears to have occurred through contiguous (stepping‐stone) spread. Molecular data further indicate that although dispersal in colonial ascidians is predominantly achieved through sexually produced propagules, aquaculture practices such as high‐pressure washing can facilitate fragmentation and potentially exacerbate infestations and spread via asexual propagules. The results presented here suggest that caution should be used against the general assumption that all invasions, even within a single species, exhibit similar patterns of colonization, as highly contrasting dynamics may transpire in different invaded ranges.


Molecular Ecology | 2012

Speciation with gene flow and the genetics of habitat transitions

Melania E. Cristescu; Anna Constantin; Dan G. Bock; Carla E. Cáceres; Teresa J. Crease

Whether speciation can advance to completion in the face of initially high levels of gene flow is a very controversial topic in evolutionary biology. Extensive gene exchange is generally considered to homogenize populations and counteract divergence. Moreover, the role of introgressive hybridization in evolution remains largely unexplored in animals, particularly in freshwater zooplankton in which allopatric speciation is considered to be the norm. Our work investigates the genetic structure of two young ecological species: the pond species, Daphnia pulex and the lake species, Daphnia pulicaria. Phylogenetic and population genetics analyses were conducted on mitochondrial NADH dehydrogenase 5 (ND5) gene, the nuclear Lactate dehydrogenase (Ldh) gene and 21 nuclear microsatellite markers in 416 individuals from habitats with various degrees of permanence. The strong and consistent phylogenetic discordance between nuclear and mitochondrial markers suggests a complex evolutionary history of multiple independent habitat transition events that involved hybridization and introgression between lake and pond Daphnia. On the other hand, the low level of contemporary gene flow between adjacent populations indicates the presence of effective habitat isolating barriers. The Daphnia system provides strong evidence for a divergence‐with‐gene flow speciation model that involves multiple habitat transition events.


Ecology and Evolution | 2012

Complex genetic patterns in closely related colonizing invasive species

Aibin Zhan; John A. Darling; Dan G. Bock; Anaïs Lacoursière-Roussel; Hugh J. MacIsaac; Melania E. Cristescu

Anthropogenic activities frequently result in both rapidly changing environments and translocation of species from their native ranges (i.e., biological invasions). Empirical studies suggest that many factors associated with these changes can lead to complex genetic patterns, particularly among invasive populations. However, genetic complexities and factors responsible for them remain uncharacterized in many cases. Here, we explore these issues in the vase tunicate Ciona intestinalis (Ascidiacea: Enterogona: Cionidae), a model species complex, of which spA and spB are rapidly spreading worldwide. We intensively sampled 26 sites (N = 873) from both coasts of North America, and performed phylogenetic and population genetics analyses based on one mitochondrial fragment (cytochrome c oxidase subunit 3–NADH dehydrogenase subunit I, COX3-ND1) and eight nuclear microsatellites. Our analyses revealed extremely complex genetic patterns in both species on both coasts. We detected a contrasting pattern based on the mitochondrial marker: two major genetic groups in C. intestinalis spA on the west coast versus no significant geographic structure in C. intestinalis spB on the east coast. For both species, geo-graphically distant populations often showed high microsatellite-based genetic affinities whereas neighboring ones often did not. In addition, mitochondrial and nuclear markers provided largely inconsistent genetic patterns. Multiple factors, including random genetic drift associated with demographic changes, rapid selection due to strong local adaptation, and varying propensity for human-mediated propagule dispersal could be responsible for the observed genetic complexities.


Molecular Ecology | 2014

On the adaptive value of cytoplasmic genomes in plants

Dan G. Bock; Rose L. Andrew; Loren H. Rieseberg

Is DNA variation maintained in organelle genomes selectively neutral? The answer to this question has important implications for many aspects of ecology and evolution. While traditionally the answer has been ‘yes’, recent studies in animals have shown that, on the contrary, mitochondrial DNA polymorphism is frequently adaptive. In plants, however, the neutrality assumption has not been strongly challenged. Here, we begin with a critical evaluation of arguments in favour of this long‐held view. We then discuss the latest empirical evidence for the opposing prediction that sequence variation in plant cytoplasmic genomes is frequently adaptive. While outstanding research progress is being made towards understanding this fundamental topic, we highlight the need for studies that combine information ranging from field experiments to physiology to molecular evolutionary biology. Such an interdisciplinary approach provides a means for determining the frequency, drivers and evolutionary significance of adaptive organelle DNA variation.


Molecular Ecology | 2012

Disentangling invasion processes in a dynamic shipping–boating network

Anaïs Lacoursière-Roussel; Dan G. Bock; Melania E. Cristescu; Frédéric Guichard; Philippe Girard; Pierre Legendre; Christopher W. McKindsey

The relative importance of multiple vectors to the initial establishment, spread and population dynamics of invasive species remains poorly understood. This study used molecular methods to clarify the roles of commercial shipping and recreational boating in the invasion by the cosmopolitan tunicate, Botryllus schlosseri. We evaluated (i) single vs. multiple introduction scenarios, (ii) the relative importance of shipping and boating to primary introductions, (iii) the interaction between these vectors for spread (i.e. the presence of a shipping‐boating network) and (iv) the role of boating in determining population similarity. Tunicates were sampled from 26 populations along the Nova Scotia, Canada, coast that were exposed to either shipping (i.e. ports) or boating (i.e. marinas) activities. A total of 874 individuals (c. 30 per population) from five ports and 21 marinas was collected and analysed using both mitochondrial cytochrome c oxidase subunit I gene (COI) and 10 nuclear microsatellite markers. The geographical location of multiple hotspot populations indicates that multiple invasions have occurred in Nova Scotia. A loss of genetic diversity from port to marina populations suggests a stronger influence of ships than recreational boats on primary coastal introductions. Population genetic similarity analysis reveals a dependence of marina populations on those that had been previously established in ports. Empirical data on marina connectivity because of boating better explains patterns in population similarities than does natural spread. We conclude that frequent primary introductions arise by ships and that secondary spread occurs gradually thereafter around individual ports, facilitated by recreational boating.


Molecular Ecology | 2015

Comparative genomics in the Asteraceae reveals little evidence for parallel evolutionary change in invasive taxa.

Kathryn A. Hodgins; Dan G. Bock; Min A. Hahn; Sylvia M. Heredia; Kathryn G. Turner; Loren H. Rieseberg

Asteraceae, the largest family of flowering plants, has given rise to many notorious invasive species. Using publicly available transcriptome assemblies from 35 Asteraceae, including six major invasive species, we examined evidence for micro‐ and macro‐evolutionary genomic changes associated with invasion. To detect episodes of positive selection repeated across multiple introductions, we conducted comparisons between native and introduced genotypes from six focal species and identified genes with elevated rates of amino acid change (dN/dS). We then looked for evidence of positive selection at a broader phylogenetic scale across all taxa. As invasive species may experience founder events during colonization and spread, we also looked for evidence of increased genetic load in introduced genotypes. We rarely found evidence for parallel changes in orthologous genes in the intraspecific comparisons, but in some cases we identified changes in members of the same gene family. Using among‐species comparisons, we detected positive selection in 0.003–0.69% and 2.4–7.8% of the genes using site and stochastic branch‐site models, respectively. These genes had diverse putative functions, including defence response, stress response and herbicide resistance, although there was no clear pattern in the GO terms. There was no indication that introduced genotypes have a higher proportion of deleterious alleles than native genotypes in the six focal species, suggesting multiple introductions and admixture mitigated the impact of drift. Our findings provide little evidence for common genomic responses in invasive taxa of the Asteraceae and hence suggest that multiple evolutionary pathways may lead to adaptation during introduction and spread in these species.

Collaboration


Dive into the Dan G. Bock's collaboration.

Top Co-Authors

Avatar

Loren H. Rieseberg

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rose L. Andrew

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Diana J. Rennison

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sébastien Renaut

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Min A. Hahn

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Sylvia M. Heredia

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Jean-Sébastien Moore

University of British Columbia

View shared research outputs
Researchain Logo
Decentralizing Knowledge