Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Melania E. Cristescu is active.

Publication


Featured researches published by Melania E. Cristescu.


Trends in Ecology and Evolution | 2014

From barcoding single individuals to metabarcoding biological communities: towards an integrative approach to the study of global biodiversity

Melania E. Cristescu

DNA-based species identification, known as barcoding, transformed the traditional approach to the study of biodiversity science. The field is transitioning from barcoding individuals to metabarcoding communities. This revolution involves new sequencing technologies, bioinformatics pipelines, computational infrastructure, and experimental designs. In this dynamic genomics landscape, metabarcoding studies remain insular and biodiversity estimates depend on the particular methods used. In this opinion article, I discuss the need for a coordinated advancement of DNA-based species identification that integrates taxonomic and barcoding information. Such an approach would facilitate access to almost 3 centuries of taxonomic knowledge and 1 decade of building repository barcodes. Conservation projects are time sensitive, research funding is becoming restricted, and informed decisions depend on our ability to embrace integrative approaches to biodiversity science.


Molecular Ecology | 2010

Invasion genetics of the Ciona intestinalis species complex: from regional endemism to global homogeneity.

Aibin Zhan; Hugh J. MacIsaac; Melania E. Cristescu

Determining the degree of population connectivity and investigating factors driving genetic exchange at various geographical scales are essential to understanding population dynamics and spread potential of invasive species. Here, we explore these issues in the highly invasive vase tunicate, Ciona intestinalis, a species whose invasion history has been obscured by its poorly understood taxonomy and population genetics. Recent phylogenetic and comparative genomic studies suggest that C. intestinalis is a cryptic species complex consisting of at least three species. We reconstructed phylogenies based on both mitochondrial (cytochrome c oxidase subunit 3—NADH dehydrogenase subunit 1 region and NADH dehydrogenase subunit 4 gene) and nuclear (internal transcribed spacer 1) sequences, results of which support four major phylogroups corresponding to the previously reported spA, spB and Ciona spp. (spC) as well as an undescribed cryptic species (spD). While spC and spD remain restricted to their native ranges in the Mediterranean Sea and Black Sea, respectively, the highly invasive species (spA and spB) have disjunct global distributions. Despite extensive interspecific divergences, we identified low phylogeographical structure within these two invasive species. Haplotype network analyses revealed comparatively limited mutation steps among haplotypes within each species. Population genetic analyses based on two mtDNA fragments and eight unlinked microsatellites illustrated relatively low population differentiation and high population connectivity at both regional and continental scales in the two invasive species. Human‐mediated dispersal coupled with a high potential for natural dispersal is probably responsible for the observed genetic homogeneity.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Ameiotic recombination in asexual lineages of Daphnia

Angela Omilian; Melania E. Cristescu; Jeffry L. Dudycha; Michael Lynch

Despite the enormous theoretical attention given to the evolutionary consequences of sexual reproduction, the validity of the key assumptions on which the theory depends rarely has been evaluated. It is often argued that a reduced ability to purge deleterious mutations condemns asexual lineages to an early extinction. However, most well characterized asexual lineages fail to exhibit the high levels of neutral allelic divergence expected in the absence of recombination. With purely descriptive data, it is difficult to evaluate whether this pattern is a consequence of the rapid demise of asexual lineages, an unusual degree of mutational stability, or recombination. Here, we show in mutation-accumulation lines of asexual Daphnia that the rate of loss of nucleotide heterozygosity by ameiotic recombination is substantially greater than the rate of introduction of new variation by mutation. This suggests that the evolutionary potential of asexual diploid species is not only a matter of mutation accumulation and reduced efficiency of selection, but it underscores the limited utility of using neutral allelic divergence as an indicator of ancient asexuality.


Integrative and Comparative Biology | 2011

An Integrated Multi-Disciplinary Approach for Studying Multiple Stressors in Freshwater Ecosystems: Daphnia as a Model Organism

Ianina Altshuler; Bora Demiri; Sen Xu; Anna Constantin; Norman D. Yan; Melania E. Cristescu

The increased overexploitation of freshwater ecosystems and their extended watersheds often generates a cascade of anthropogenic stressors (e.g., acidification, eutrophication, metal contamination, Ca decline, changes in the physical environment, introduction of invasive species, over-harvesting of resources). The combined effect of these stressors is particularly difficult to study, requiring a coordinated multi-disciplinary effort and insights from various sub-disciplines of biology, including ecology, evolution, toxicology, and genetics. It also would benefit from a well-developed and broadly accepted model systems. The freshwater crustacean Daphnia is an excellent model organism for studying multiple stressors because it has been a chosen focus of study in all four of these fields. Daphnia is a widespread keystone species in most freshwater ecosystems, where it is routinely exposed to a multitude of anthropogenic and natural stressors. It has a fully sequenced genome, a well-understood life history and ecology, and a huge library of responses to toxicity. To make the case for its value as a model species, we consider the joint and separate effects of natural and three anthropogenic stressors-climatic change, calcium decline, and metal contaminants on daphniids. We propose that integrative approaches marrying various subfields of biology can advance our understanding of the combined effects of stressors. Such approaches can involve the measuring of multiple responses at several levels of biological organization from molecules to natural populations. For example, novel interdisciplinary approaches such as transcriptome profiling and mutation accumulation experiments can offer insights into how multiple stressors influence gene transcription and mutation rates across genomes, and, thus, help determine the causal mechanism between environmental stressors and population/community effects as well as long-term evolutionary patterns.


Molecular Ecology | 2015

Genetic reconstructions of invasion history

Melania E. Cristescu

A diverse array of molecular markers and constantly evolving analytical approaches have been employed to reconstruct the invasion histories of the most notorious invasions. Detailed information on the source(s) of introduction, invasion route, type of vectors, number of independent introductions and pathways of secondary spread has been corroborated for a large number of biological invasions. In this review, I present the promises and limitations of current techniques while discussing future directions. Broad phylogeographic surveys of native and introduced populations have traced back invasion routes with surprising precision. These approaches often further clarify species boundaries and reveal complex patterns of genetic relationships with noninvasive relatives. Moreover, fine‐scale analyses of population genetics or genomics allow deep inferences on the colonization dynamics across invaded ranges and can reveal the extent of gene flow among populations across various geographical scales, major demographic events such as genetic bottlenecks as well as other important evolutionary events such as hybridization with native taxa, inbreeding and selective sweeps. Genetic data have been often corroborated successfully with historical, geographical and ecological data to enable a comprehensive reconstruction of the invasion process. The advent of next‐generation sequencing, along with the availability of extensive databases of repository sequences generated by barcoding projects opens the opportunity to broadly monitor biodiversity, to identify early invasions and to quantify failed invasions that would otherwise remain inconspicuous to the human eye.


Journal of Great Lakes Research | 2001

Distribution, Fecundity, and Genetics of Cercopagis pengoi (Ostroumov) (Crustacea, Cladocera) in Lake Ontario

Joseph C. Makarewicz; Igor A. Grigorovich; Edward L. Mills; Elizabeth Damaske; Melania E. Cristescu; Webster Pearsall; Michael J. LaVoie; Rachel Keats; Lars G. Rudstam; Paul D. N. Hebert; Heather Halbritter; Thomas J. Kelly; Carolyn Matkovich; Hugh J. MacIsaac

Two distinctive forms of cercopagids, first detected in 1998 and identified as Cercopagis pengoi and C. ossiani using taxonomic keys, were observed to co-occur in Lake Ontario. C. ossiani was the predominant form in western Lake Ontario in mid-June 1999 but was then replaced by C. pengoi-like animals over the rest of the season. Mitochondrial DNA analyses revealed that these forms were genetically identical at the ND5 gene and that they are morphologically distinctive forms of C. pengoi. In 1999, Cercopagis reached a maximum abundance of 1,759 individuals/m3 (average abundance = 281 individuals/ m3, average biomass = 5.2 mg/m3). In August, Cercopagis biomass was lowest at nearshore and embayment sites and highest at offshore sites. Body length of parthenogenetic females was lower at nearshore (1.16 mm) and embayment (1.19 mm) sites relative to offshore (1.32 mm) ones. Maximal clutch size of parthenogenetic females was 24 embryos per individual. Cercopagis has already spread to Lake Michigan and five Finger Lakes. Although waterfowl may disperse Cercopagis, these invasions likely resulted from human activities.


Genetics | 2008

The Rate and Spectrum of Microsatellite Mutation in Caenorhabditis elegans and Daphnia pulex

Amanda L. Seyfert; Melania E. Cristescu; Linda M. Frisse; Sarah Schaack; W. Kelley Thomas; Michael Lynch

The effective use of microsatellite loci as tools for microevolutionary analysis requires knowledge of the factors influencing the rate and pattern of mutation, much of which is derived from indirect inference from population samples. Interspecific variation in microsatellite stability also provides a glimpse into aspects of phylogenetic constancy of mutational processes. Using long-term series of mutation-accumulation lines, we have obtained direct estimates of the spectrum of microsatellite mutations in two model systems: the nematode Caenorhabditis elegans and the microcrustacean Daphnia pulex. Although the scaling of the mutation rate with the number of tandem repeats is highly consistent across distantly related species, including yeast and human, the per-cell-division mutation rate appears to be elevated in multicellular species. Contrary to the expectations under the stepwise mutation model, most microsatellite mutations in C. elegans and D. pulex involve changes of multiple repeat units, with expansions being much more common than contractions.


Biological Invasions | 2011

Use of DNA barcoding to detect invertebrate invasive species from diapausing eggs

Elizabeta Briski; Melania E. Cristescu; Sarah A. Bailey; Hugh J. MacIsaac

The global transhipment of ballast water and associated flora and fauna by cargo vessels has increased dramatically in recent decades. Invertebrate species are frequently carried in ballast water and sediment, although identification of diapausing eggs can be extremely problematic. Here we test the application of DNA barcoding using mitochondrial cytochrome c oxidase subunit I and 16S rDNA to identify species from diapausing eggs collected in ballast sediment of ships. The accuracy of DNA barcoding identification was tested by comparing results from the molecular markers against each other, and by comparing barcoding results to traditional morphological identification of individuals hatched from diapausing eggs. Further, we explored two public genetic databases to determine the broader applicability of DNA barcodes. Of 289 diapausing eggs surveyed, sufficient DNA for barcoding was obtained from 96 individuals (33%). Unsuccessful DNA extractions from 67% of eggs in our study were most likely due to degraded condition of eggs. Of 96 eggs with successful DNA extraction, 61 (64%) were identified to species level, while 36% were identified to possible family/order level. Species level identifications were always consistent between methodologies. DNA barcoding was suitable for a wide range of taxa, including Branchiopoda, Copepoda, Rotifera, Bryozoa and Ascidia. Branchiopoda and Copepoda were respectively the best and worst represented groups in genetic databases. Though genetic databases remain incomplete, DNA barcoding resolved nearly double the number of species identified by traditional taxonomy (19 vs. 10). Notorious invaders are well represented in existing databases, rendering these NIS detectable using molecular methods. DNA barcoding provides a rapid and accurate approach to identification of invertebrate diapausing eggs that otherwise would be very difficult to identify.


Ecology and Evolution | 2015

Toward accurate molecular identification of species in complex environmental samples: testing the performance of sequence filtering and clustering methods

Jullien M. Flynn; Emily A. Brown; Frédéric J. J. Chain; Hugh J. MacIsaac; Melania E. Cristescu

Metabarcoding has the potential to become a rapid, sensitive, and effective approach for identifying species in complex environmental samples. Accurate molecular identification of species depends on the ability to generate operational taxonomic units (OTUs) that correspond to biological species. Due to the sometimes enormous estimates of biodiversity using this method, there is a great need to test the efficacy of data analysis methods used to derive OTUs. Here, we evaluate the performance of various methods for clustering length variable 18S amplicons from complex samples into OTUs using a mock community and a natural community of zooplankton species. We compare analytic procedures consisting of a combination of (1) stringent and relaxed data filtering, (2) singleton sequences included and removed, (3) three commonly used clustering algorithms (mothur, UCLUST, and UPARSE), and (4) three methods of treating alignment gaps when calculating sequence divergence. Depending on the combination of methods used, the number of OTUs varied by nearly two orders of magnitude for the mock community (60–5068 OTUs) and three orders of magnitude for the natural community (22–22191 OTUs). The use of relaxed filtering and the inclusion of singletons greatly inflated OTU numbers without increasing the ability to recover species. Our results also suggest that the method used to treat gaps when calculating sequence divergence can have a great impact on the number of OTUs. Our findings are particularly relevant to studies that cover taxonomically diverse species and employ markers such as rRNA genes in which length variation is extensive.


Heredity | 2004

Dispersal of the Ponto-Caspian amphipod Echinogammarus ischnus: invasion waves from the Pleistocene to the present

Melania E. Cristescu; Jonathan D. S. Witt; Igor A. Grigorovich; Paul D. N. Hebert; Hugh J. MacIsaac

The geographical range of the amphipod crustacean Echinogammarus ischnus has expanded over the past century from the Ponto-Caspian region to Western Europe, the Baltic Sea, and the Great Lakes of North America. The present study explores the phylogeographic patterns of this amphipod across its current distribution, based on an examination of nucleotide diversity in the mitochondrial cytochrome c oxidase subunit I (COI) gene. Marked genetic divergence exists among populations of E. ischnus from the Black and Caspian Seas, as well as those from the drainage system of the Black Sea. This divergence suggests the prolonged geographic isolation of these native populations, reflecting the limited dispersal capability of E. ischnus. By contrast, invading populations are characterized by a lack of genetic variation; a single mitochondrial genotype of Black Sea origin has colonized sites from the Rhine River to North America. The dispersal pattern in E. ischnus is very similar to that in the Ponto-Caspian cladoceran Cercopagis pengoi. Despite their contrasting life history strategies, these invading species followed the same route of invasion from the northern Black Sea to the Baltic Sea region, and subsequently to North America.

Collaboration


Dive into the Melania E. Cristescu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aibin Zhan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dan G. Bock

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elizabeta Briski

Fisheries and Oceans Canada

View shared research outputs
Top Co-Authors

Avatar

Sen Xu

University of Windsor

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge