Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dan Graur is active.

Publication


Featured researches published by Dan Graur.


Nucleic Acids Research | 2010

GUIDANCE: a web server for assessing alignment confidence scores

Osnat Penn; Eyal Privman; Haim Ashkenazy; Giddy Landan; Dan Graur; Tal Pupko

Evaluating the accuracy of multiple sequence alignment (MSA) is critical for virtually every comparative sequence analysis that uses an MSA as input. Here we present the GUIDANCE web-server, a user-friendly, open access tool for the identification of unreliable alignment regions. The web-server accepts as input a set of unaligned sequences. The server aligns the sequences and provides a simple graphic visualization of the confidence score of each column, residue and sequence of an alignment, using a color-coding scheme. The method is generic and the user is allowed to choose the alignment algorithm (ClustalW, MAFFT and PRANK are supported) as well as any type of molecular sequences (nucleotide, protein or codon sequences). The server implements two different algorithms for evaluating confidence scores: (i) the heads-or-tails (HoT) method, which measures alignment uncertainty due to co-optimal solutions; (ii) the GUIDANCE method, which measures the robustness of the alignment to guide-tree uncertainty. The server projects the confidence scores onto the MSA and points to columns and sequences that are unreliably aligned. These can be automatically removed in preparation for downstream analyses. GUIDANCE is freely available for use at http://guidance.tau.ac.il.


Journal of Molecular Evolution | 1982

Patterns of Nucleotide Substitution in Pseudogenes and Functional Genes

Takashi Gojobori; Wen-Hsiung Li; Dan Graur

SummaryThe pattern of point mutations is inferred from nucleotide substitutions in pseudogenes. The pattern obtained suggests that transition mutations occur somewhat more frequently than transversion mutations and that mutations result more often in A or T than in G or C. Our results are discussed with respect to the predictions from Topal and Frescos model for the molecular basis of point (substitution) mutations (Nature 263:285–289, 1976). The pattern of nucleotide substitution at the first and second positions of codons in functional genes is quite similar to that in pseudogenes, but the relative frequency of the transition C→T in the sense strand is drastically reduced and those of the transversions C→G and G→C are doubled. The differences between the two patterns can be explained by the observation that in the protein evolution amino acid substitutions occur mainly between amino acids with similar biochemical properties (Grantham, Science 185:862–864, 1974). Our results for the patterns of nucleotide substitutions in pseudogenes and in functional genes lead to the prediction that both the coding and non-coding regions of protein coding genes should have high frequencies of A and T. Available data show that the non-coding regions are indeed high in A and T but the coding regions are low in T, though high in A.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Genome sequences of the human body louse and its primary endosymbiont provide insights into the permanent parasitic lifestyle

Ewen F. Kirkness; Brian J. Haas; Weilin Sun; Henk R. Braig; M. Alejandra Perotti; John M. Clark; Si Hyeock Lee; Hugh M. Robertson; Ryan C. Kennedy; Eran Elhaik; Daniel Gerlach; Evgenia V. Kriventseva; Christine G. Elsik; Dan Graur; Catherine A. Hill; Jan A. Veenstra; Brian Walenz; Jose M. C. Tubio; José M. C. Ribeiro; Julio Rozas; J. Spencer Johnston; Justin T. Reese; Aleksandar Popadić; Marta Tojo; Didier Raoult; David L. Reed; Yoshinori Tomoyasu; Emily Kraus; Omprakash Mittapalli; Venu M. Margam

As an obligatory parasite of humans, the body louse (Pediculus humanus humanus) is an important vector for human diseases, including epidemic typhus, relapsing fever, and trench fever. Here, we present genome sequences of the body louse and its primary bacterial endosymbiont Candidatus Riesia pediculicola. The body louse has the smallest known insect genome, spanning 108 Mb. Despite its status as an obligate parasite, it retains a remarkably complete basal insect repertoire of 10,773 protein-coding genes and 57 microRNAs. Representing hemimetabolous insects, the genome of the body louse thus provides a reference for studies of holometabolous insects. Compared with other insect genomes, the body louse genome contains significantly fewer genes associated with environmental sensing and response, including odorant and gustatory receptors and detoxifying enzymes. The unique architecture of the 18 minicircular mitochondrial chromosomes of the body louse may be linked to the loss of the gene encoding the mitochondrial single-stranded DNA binding protein. The genome of the obligatory louse endosymbiont Candidatus Riesia pediculicola encodes less than 600 genes on a short, linear chromosome and a circular plasmid. The plasmid harbors a unique arrangement of genes required for the synthesis of pantothenate, an essential vitamin deficient in the louse diet. The human body louse, its primary endosymbiont, and the bacterial pathogens that it vectors all possess genomes reduced in size compared with their free-living close relatives. Thus, the body louse genome project offers unique information and tools to use in advancing understanding of coevolution among vectors, symbionts, and pathogens.


Genome Biology and Evolution | 2013

On the immortality of television sets: “function” in the human genome according to the evolution-free gospel of ENCODE

Dan Graur; Yichen Zheng; Nicholas Price; Ricardo B. R. Azevedo; Rebecca A. Zufall; Eran Elhaik

A recent slew of ENCyclopedia Of DNA Elements (ENCODE) Consortium publications, specifically the article signed by all Consortium members, put forward the idea that more than 80% of the human genome is functional. This claim flies in the face of current estimates according to which the fraction of the genome that is evolutionarily conserved through purifying selection is less than 10%. Thus, according to the ENCODE Consortium, a biological function can be maintained indefinitely without selection, which implies that at least 80 − 10 = 70% of the genome is perfectly invulnerable to deleterious mutations, either because no mutation can ever occur in these “functional” regions or because no mutation in these regions can ever be deleterious. This absurd conclusion was reached through various means, chiefly by employing the seldom used “causal role” definition of biological function and then applying it inconsistently to different biochemical properties, by committing a logical fallacy known as “affirming the consequent,” by failing to appreciate the crucial difference between “junk DNA” and “garbage DNA,” by using analytical methods that yield biased errors and inflate estimates of functionality, by favoring statistical sensitivity over specificity, and by emphasizing statistical significance rather than the magnitude of the effect. Here, we detail the many logical and methodological transgressions involved in assigning functionality to almost every nucleotide in the human genome. The ENCODE results were predicted by one of its authors to necessitate the rewriting of textbooks. We agree, many textbooks dealing with marketing, mass-media hype, and public relations may well have to be rewritten.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Draft genome of the red harvester ant Pogonomyrmex barbatus

Chris R. Smith; Christopher D. Smith; Hugh M. Robertson; Martin Helmkampf; Aleksey V. Zimin; Mark Yandell; Carson Holt; Hao Hu; Ehab Abouheif; Richard Benton; Elizabeth Cash; Vincent Croset; Cameron R. Currie; Eran Elhaik; Christine G. Elsik; Marie Julie Favé; Vilaiwan Fernandes; Joshua D. Gibson; Dan Graur; Wulfila Gronenberg; Kirk J. Grubbs; Darren E. Hagen; Ana Sofia Ibarraran Viniegra; Brian R. Johnson; Reed M. Johnson; Abderrahman Khila; Jay W. Kim; Kaitlyn A. Mathis; Monica Munoz-Torres; Marguerite C. Murphy

We report the draft genome sequence of the red harvester ant, Pogonomyrmex barbatus. The genome was sequenced using 454 pyrosequencing, and the current assembly and annotation were completed in less than 1 y. Analyses of conserved gene groups (more than 1,200 manually annotated genes to date) suggest a high-quality assembly and annotation comparable to recently sequenced insect genomes using Sanger sequencing. The red harvester ant is a model for studying reproductive division of labor, phenotypic plasticity, and sociogenomics. Although the genome of P. barbatus is similar to other sequenced hymenopterans (Apis mellifera and Nasonia vitripennis) in GC content and compositional organization, and possesses a complete CpG methylation toolkit, its predicted genomic CpG content differs markedly from the other hymenopterans. Gene networks involved in generating key differences between the queen and worker castes (e.g., wings and ovaries) show signatures of increased methylation and suggest that ants and bees may have independently co-opted the same gene regulatory mechanisms for reproductive division of labor. Gene family expansions (e.g., 344 functional odorant receptors) and pseudogene accumulation in chemoreception and P450 genes compared with A. mellifera and N. vitripennis are consistent with major life-history changes during the adaptive radiation of Pogonomyrmex spp., perhaps in parallel with the development of the North American deserts.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Draft genome of the globally widespread and invasive Argentine ant (Linepithema humile)

Christopher D. Smith; Aleksey V. Zimin; Carson Holt; Ehab Abouheif; Richard Benton; Elizabeth Cash; Vincent Croset; Cameron R. Currie; Eran Elhaik; Christine G. Elsik; Marie Julie Favé; Vilaiwan Fernandes; Jürgen Gadau; Joshua D. Gibson; Dan Graur; Kirk J. Grubbs; Darren E. Hagen; Martin Helmkampf; Jo Anne Holley; Hao Hu; Ana Sofia Ibarraran Viniegra; Brian R. Johnson; Reed M. Johnson; Abderrahman Khila; Jay W. Kim; Joseph G. Laird; Kaitlyn A. Mathis; Joseph A. Moeller; Monica Munoz-Torres; Marguerite C. Murphy

Ants are some of the most abundant and familiar animals on Earth, and they play vital roles in most terrestrial ecosystems. Although all ants are eusocial, and display a variety of complex and fascinating behaviors, few genomic resources exist for them. Here, we report the draft genome sequence of a particularly widespread and well-studied species, the invasive Argentine ant (Linepithema humile), which was accomplished using a combination of 454 (Roche) and Illumina sequencing and community-based funding rather than federal grant support. Manual annotation of >1,000 genes from a variety of different gene families and functional classes reveals unique features of the Argentine ants biology, as well as similarities to Apis mellifera and Nasonia vitripennis. Distinctive features of the Argentine ant genome include remarkable expansions of gustatory (116 genes) and odorant receptors (367 genes), an abundance of cytochrome P450 genes (>110), lineage-specific expansions of yellow/major royal jelly proteins and desaturases, and complete CpG DNA methylation and RNAi toolkits. The Argentine ant genome contains fewer immune genes than Drosophila and Tribolium, which may reflect the prominent role played by behavioral and chemical suppression of pathogens. Analysis of the ratio of observed to expected CpG nucleotides for genes in the reproductive development and apoptosis pathways suggests higher levels of methylation than in the genome overall. The resources provided by this genome sequence will offer an abundance of tools for researchers seeking to illuminate the fascinating biology of this emerging model organism.


PLOS Genetics | 2011

The Genome Sequence of the Leaf-Cutter Ant Atta cephalotes Reveals Insights into Its Obligate Symbiotic Lifestyle

Garret Suen; Clotilde Teiling; Lewyn Li; Carson Holt; Ehab Abouheif; Erich Bornberg-Bauer; Pascal Bouffard; Eric J. Caldera; Elizabeth Cash; Amy Cavanaugh; Olgert Denas; Eran Elhaik; Marie-Julie Favé; Jürgen Gadau; Joshua D. Gibson; Dan Graur; Kirk J. Grubbs; Darren E. Hagen; Timothy T. Harkins; Martin Helmkampf; Hao Hu; Brian R. Johnson; Jay Joong Kim; Sarah E. Marsh; Joseph A. Moeller; Monica Munoz-Torres; Marguerite C. Murphy; Meredith C. Naughton; Surabhi Nigam; Rick P. Overson

Leaf-cutter ants are one of the most important herbivorous insects in the Neotropics, harvesting vast quantities of fresh leaf material. The ants use leaves to cultivate a fungus that serves as the colonys primary food source. This obligate ant-fungus mutualism is one of the few occurrences of farming by non-humans and likely facilitated the formation of their massive colonies. Mature leaf-cutter ant colonies contain millions of workers ranging in size from small garden tenders to large soldiers, resulting in one of the most complex polymorphic caste systems within ants. To begin uncovering the genomic underpinnings of this system, we sequenced the genome of Atta cephalotes using 454 pyrosequencing. One prediction from this ants lifestyle is that it has undergone genetic modifications that reflect its obligate dependence on the fungus for nutrients. Analysis of this genome sequence is consistent with this hypothesis, as we find evidence for reductions in genes related to nutrient acquisition. These include extensive reductions in serine proteases (which are likely unnecessary because proteolysis is not a primary mechanism used to process nutrients obtained from the fungus), a loss of genes involved in arginine biosynthesis (suggesting that this amino acid is obtained from the fungus), and the absence of a hexamerin (which sequesters amino acids during larval development in other insects). Following recent reports of genome sequences from other insects that engage in symbioses with beneficial microbes, the A. cephalotes genome provides new insights into the symbiotic lifestyle of this ant and advances our understanding of host–microbe symbioses.


BMC Genomics | 2014

Finding the missing honey bee genes: Lessons learned from a genome upgrade

Christine G. Elsik; Kim C. Worley; Anna K. Bennett; Martin Beye; Francisco Camara; Christopher P. Childers; Dirk C. de Graaf; Griet Debyser; Jixin Deng; Bart Devreese; Eran Elhaik; Jay D. Evans; Leonard J. Foster; Dan Graur; Roderic Guigó; Katharina Hoff; Michael Holder; Matthew E. Hudson; Greg J. Hunt; Huaiyang Jiang; Vandita Joshi; Radhika S. Khetani; Peter Kosarev; Christie Kovar; Jian Ma; Ryszard Maleszka; Robin F. A. Moritz; Monica Munoz-Torres; Terence Murphy; Donna M. Muzny

BackgroundThe first generation of genome sequence assemblies and annotations have had a significant impact upon our understanding of the biology of the sequenced species, the phylogenetic relationships among species, the study of populations within and across species, and have informed the biology of humans. As only a few Metazoan genomes are approaching finished quality (human, mouse, fly and worm), there is room for improvement of most genome assemblies. The honey bee (Apis mellifera) genome, published in 2006, was noted for its bimodal GC content distribution that affected the quality of the assembly in some regions and for fewer genes in the initial gene set (OGSv1.0) compared to what would be expected based on other sequenced insect genomes.ResultsHere, we report an improved honey bee genome assembly (Amel_4.5) with a new gene annotation set (OGSv3.2), and show that the honey bee genome contains a number of genes similar to that of other insect genomes, contrary to what was suggested in OGSv1.0. The new genome assembly is more contiguous and complete and the new gene set includes ~5000 more protein-coding genes, 50% more than previously reported. About 1/6 of the additional genes were due to improvements to the assembly, and the remaining were inferred based on new RNAseq and protein data.ConclusionsLessons learned from this genome upgrade have important implications for future genome sequencing projects. Furthermore, the improvements significantly enhance genomic resources for the honey bee, a key model for social behavior and essential to global ecology through pollination.


Gene | 2003

Bacterial type III secretion systems are ancient and evolved by multiple horizontal-transfer events.

Uri Gophna; Eliora Z. Ron; Dan Graur

Type III secretion systems (TTSS) are unique bacterial mechanisms that mediate elaborate interactions with their hosts. The fact that several of the TTSS proteins are closely related to flagellar export proteins has led to the suggestion that TTSS had evolved from flagella. Here we reconstruct the evolutionary history of four conserved type III secretion proteins and their phylogenetic relationships with flagellar paralogs. Our analysis indicates that the TTSS and the flagellar export mechanism share a common ancestor, but have evolved independently from one another. The suggestion that TTSS genes have evolved from genes encoding flagellar proteins is effectively refuted. A comparison of the species tree, as deduced from 16S rDNA sequences, to the protein phylogenetic trees has led to the identification of several major lateral transfer events involving clusters of TTSS genes. It is hypothesized that horizontal gene transfer has occurred much earlier and more frequently than previously inferred for TTSS genes and is, consequently, a major force shaping the evolution of species that harbor type III secretion systems.


Journal of Molecular Evolution | 1989

Deletions in processed pseudogenes accumulate faster in rodents than in humans

Dan Graur; Yuval Shuali; Wen-Hsiung Li

SummaryThe relative rates of point nucleotide substitution and accumulation of gap events (deletions and insertions) were calculated for 22 human and 30 rodent processed pseudogenes. Deletion events not only outnumbered insertions (the ratio being 7∶1 and 3∶1 for human and rodent pseudogenes, respectively), but also the total length of deletions was greater than that of insertions. Compared with their functional homologs, human processed pseudogenes were found to be shorter by about 1.2%, and rodent pseudogenes by about 2.3%. DNA loss from processed pseudogenes through deletion is estimated to be at least seven times faster in rodents than in humans. In comparison with the rate of point substitutions, the abridgment of pseudogenes during evolutionary times is a slow process that probably does not retard the rate of growth of the genome due to the proliferation of processed pseudogenes.

Collaboration


Dive into the Dan Graur's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eran Elhaik

University of Sheffield

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Monica Munoz-Torres

Lawrence Berkeley National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge