Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eran Elhaik is active.

Publication


Featured researches published by Eran Elhaik.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Genome sequences of the human body louse and its primary endosymbiont provide insights into the permanent parasitic lifestyle

Ewen F. Kirkness; Brian J. Haas; Weilin Sun; Henk R. Braig; M. Alejandra Perotti; John M. Clark; Si Hyeock Lee; Hugh M. Robertson; Ryan C. Kennedy; Eran Elhaik; Daniel Gerlach; Evgenia V. Kriventseva; Christine G. Elsik; Dan Graur; Catherine A. Hill; Jan A. Veenstra; Brian Walenz; Jose M. C. Tubio; José M. C. Ribeiro; Julio Rozas; J. Spencer Johnston; Justin T. Reese; Aleksandar Popadić; Marta Tojo; Didier Raoult; David L. Reed; Yoshinori Tomoyasu; Emily Kraus; Omprakash Mittapalli; Venu M. Margam

As an obligatory parasite of humans, the body louse (Pediculus humanus humanus) is an important vector for human diseases, including epidemic typhus, relapsing fever, and trench fever. Here, we present genome sequences of the body louse and its primary bacterial endosymbiont Candidatus Riesia pediculicola. The body louse has the smallest known insect genome, spanning 108 Mb. Despite its status as an obligate parasite, it retains a remarkably complete basal insect repertoire of 10,773 protein-coding genes and 57 microRNAs. Representing hemimetabolous insects, the genome of the body louse thus provides a reference for studies of holometabolous insects. Compared with other insect genomes, the body louse genome contains significantly fewer genes associated with environmental sensing and response, including odorant and gustatory receptors and detoxifying enzymes. The unique architecture of the 18 minicircular mitochondrial chromosomes of the body louse may be linked to the loss of the gene encoding the mitochondrial single-stranded DNA binding protein. The genome of the obligatory louse endosymbiont Candidatus Riesia pediculicola encodes less than 600 genes on a short, linear chromosome and a circular plasmid. The plasmid harbors a unique arrangement of genes required for the synthesis of pantothenate, an essential vitamin deficient in the louse diet. The human body louse, its primary endosymbiont, and the bacterial pathogens that it vectors all possess genomes reduced in size compared with their free-living close relatives. Thus, the body louse genome project offers unique information and tools to use in advancing understanding of coevolution among vectors, symbionts, and pathogens.


Genome Biology and Evolution | 2013

On the immortality of television sets: “function” in the human genome according to the evolution-free gospel of ENCODE

Dan Graur; Yichen Zheng; Nicholas Price; Ricardo B. R. Azevedo; Rebecca A. Zufall; Eran Elhaik

A recent slew of ENCyclopedia Of DNA Elements (ENCODE) Consortium publications, specifically the article signed by all Consortium members, put forward the idea that more than 80% of the human genome is functional. This claim flies in the face of current estimates according to which the fraction of the genome that is evolutionarily conserved through purifying selection is less than 10%. Thus, according to the ENCODE Consortium, a biological function can be maintained indefinitely without selection, which implies that at least 80 − 10 = 70% of the genome is perfectly invulnerable to deleterious mutations, either because no mutation can ever occur in these “functional” regions or because no mutation in these regions can ever be deleterious. This absurd conclusion was reached through various means, chiefly by employing the seldom used “causal role” definition of biological function and then applying it inconsistently to different biochemical properties, by committing a logical fallacy known as “affirming the consequent,” by failing to appreciate the crucial difference between “junk DNA” and “garbage DNA,” by using analytical methods that yield biased errors and inflate estimates of functionality, by favoring statistical sensitivity over specificity, and by emphasizing statistical significance rather than the magnitude of the effect. Here, we detail the many logical and methodological transgressions involved in assigning functionality to almost every nucleotide in the human genome. The ENCODE results were predicted by one of its authors to necessitate the rewriting of textbooks. We agree, many textbooks dealing with marketing, mass-media hype, and public relations may well have to be rewritten.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Draft genome of the globally widespread and invasive Argentine ant (Linepithema humile)

Christopher D. Smith; Aleksey V. Zimin; Carson Holt; Ehab Abouheif; Richard Benton; Elizabeth Cash; Vincent Croset; Cameron R. Currie; Eran Elhaik; Christine G. Elsik; Marie Julie Favé; Vilaiwan Fernandes; Jürgen Gadau; Joshua D. Gibson; Dan Graur; Kirk J. Grubbs; Darren E. Hagen; Martin Helmkampf; Jo Anne Holley; Hao Hu; Ana Sofia Ibarraran Viniegra; Brian R. Johnson; Reed M. Johnson; Abderrahman Khila; Jay W. Kim; Joseph G. Laird; Kaitlyn A. Mathis; Joseph A. Moeller; Monica Munoz-Torres; Marguerite C. Murphy

Ants are some of the most abundant and familiar animals on Earth, and they play vital roles in most terrestrial ecosystems. Although all ants are eusocial, and display a variety of complex and fascinating behaviors, few genomic resources exist for them. Here, we report the draft genome sequence of a particularly widespread and well-studied species, the invasive Argentine ant (Linepithema humile), which was accomplished using a combination of 454 (Roche) and Illumina sequencing and community-based funding rather than federal grant support. Manual annotation of >1,000 genes from a variety of different gene families and functional classes reveals unique features of the Argentine ants biology, as well as similarities to Apis mellifera and Nasonia vitripennis. Distinctive features of the Argentine ant genome include remarkable expansions of gustatory (116 genes) and odorant receptors (367 genes), an abundance of cytochrome P450 genes (>110), lineage-specific expansions of yellow/major royal jelly proteins and desaturases, and complete CpG DNA methylation and RNAi toolkits. The Argentine ant genome contains fewer immune genes than Drosophila and Tribolium, which may reflect the prominent role played by behavioral and chemical suppression of pathogens. Analysis of the ratio of observed to expected CpG nucleotides for genes in the reproductive development and apoptosis pathways suggests higher levels of methylation than in the genome overall. The resources provided by this genome sequence will offer an abundance of tools for researchers seeking to illuminate the fascinating biology of this emerging model organism.


PLOS Genetics | 2011

The Genome Sequence of the Leaf-Cutter Ant Atta cephalotes Reveals Insights into Its Obligate Symbiotic Lifestyle

Garret Suen; Clotilde Teiling; Lewyn Li; Carson Holt; Ehab Abouheif; Erich Bornberg-Bauer; Pascal Bouffard; Eric J. Caldera; Elizabeth Cash; Amy Cavanaugh; Olgert Denas; Eran Elhaik; Marie-Julie Favé; Jürgen Gadau; Joshua D. Gibson; Dan Graur; Kirk J. Grubbs; Darren E. Hagen; Timothy T. Harkins; Martin Helmkampf; Hao Hu; Brian R. Johnson; Jay Joong Kim; Sarah E. Marsh; Joseph A. Moeller; Monica Munoz-Torres; Marguerite C. Murphy; Meredith C. Naughton; Surabhi Nigam; Rick P. Overson

Leaf-cutter ants are one of the most important herbivorous insects in the Neotropics, harvesting vast quantities of fresh leaf material. The ants use leaves to cultivate a fungus that serves as the colonys primary food source. This obligate ant-fungus mutualism is one of the few occurrences of farming by non-humans and likely facilitated the formation of their massive colonies. Mature leaf-cutter ant colonies contain millions of workers ranging in size from small garden tenders to large soldiers, resulting in one of the most complex polymorphic caste systems within ants. To begin uncovering the genomic underpinnings of this system, we sequenced the genome of Atta cephalotes using 454 pyrosequencing. One prediction from this ants lifestyle is that it has undergone genetic modifications that reflect its obligate dependence on the fungus for nutrients. Analysis of this genome sequence is consistent with this hypothesis, as we find evidence for reductions in genes related to nutrient acquisition. These include extensive reductions in serine proteases (which are likely unnecessary because proteolysis is not a primary mechanism used to process nutrients obtained from the fungus), a loss of genes involved in arginine biosynthesis (suggesting that this amino acid is obtained from the fungus), and the absence of a hexamerin (which sequesters amino acids during larval development in other insects). Following recent reports of genome sequences from other insects that engage in symbioses with beneficial microbes, the A. cephalotes genome provides new insights into the symbiotic lifestyle of this ant and advances our understanding of host–microbe symbioses.


BMC Genomics | 2014

Finding the missing honey bee genes: Lessons learned from a genome upgrade

Christine G. Elsik; Kim C. Worley; Anna K. Bennett; Martin Beye; Francisco Camara; Christopher P. Childers; Dirk C. de Graaf; Griet Debyser; Jixin Deng; Bart Devreese; Eran Elhaik; Jay D. Evans; Leonard J. Foster; Dan Graur; Roderic Guigó; Katharina Hoff; Michael Holder; Matthew E. Hudson; Greg J. Hunt; Huaiyang Jiang; Vandita Joshi; Radhika S. Khetani; Peter Kosarev; Christie Kovar; Jian Ma; Ryszard Maleszka; Robin F. A. Moritz; Monica Munoz-Torres; Terence Murphy; Donna M. Muzny

BackgroundThe first generation of genome sequence assemblies and annotations have had a significant impact upon our understanding of the biology of the sequenced species, the phylogenetic relationships among species, the study of populations within and across species, and have informed the biology of humans. As only a few Metazoan genomes are approaching finished quality (human, mouse, fly and worm), there is room for improvement of most genome assemblies. The honey bee (Apis mellifera) genome, published in 2006, was noted for its bimodal GC content distribution that affected the quality of the assembly in some regions and for fewer genes in the initial gene set (OGSv1.0) compared to what would be expected based on other sequenced insect genomes.ResultsHere, we report an improved honey bee genome assembly (Amel_4.5) with a new gene annotation set (OGSv3.2), and show that the honey bee genome contains a number of genes similar to that of other insect genomes, contrary to what was suggested in OGSv1.0. The new genome assembly is more contiguous and complete and the new gene set includes ~5000 more protein-coding genes, 50% more than previously reported. About 1/6 of the additional genes were due to improvements to the assembly, and the remaining were inferred based on new RNAseq and protein data.ConclusionsLessons learned from this genome upgrade have important implications for future genome sequencing projects. Furthermore, the improvements significantly enhance genomic resources for the honey bee, a key model for social behavior and essential to global ecology through pollination.


Nature Communications | 2014

Geographic population structure analysis of worldwide human populations infers their biogeographical origins

Eran Elhaik; Tatiana V. Tatarinova; Dmitri Chebotarev; Ignazio Piras; Carla Maria Calò; Antonella De Montis; Manuela Atzori; Monica Marini; Sergio Tofanelli; Paolo Francalacci; Luca Pagani; Chris Tyler-Smith; Yali Xue; Francesco Cucca; Theodore G. Schurr; Jill B. Gaieski; Carlalynne Melendez; Miguel Vilar; Amanda C. Owings; Rocío Gómez; Ricardo Fujita; Fabrício R. Santos; David Comas; Oleg Balanovsky; Elena Balanovska; Pierre Zalloua; Himla Soodyall; Ramasamy Pitchappan; ArunKumar GaneshPrasad; Michael F. Hammer

The search for a method that utilizes biological information to predict humans’ place of origin has occupied scientists for millennia. Over the past four decades, scientists have employed genetic data in an effort to achieve this goal but with limited success. While biogeographical algorithms using next-generation sequencing data have achieved an accuracy of 700 km in Europe, they were inaccurate elsewhere. Here we describe the Geographic Population Structure (GPS) algorithm and demonstrate its accuracy with three data sets using 40,000–130,000 SNPs. GPS placed 83% of worldwide individuals in their country of origin. Applied to over 200 Sardinians villagers, GPS placed a quarter of them in their villages and most of the rest within 50 km of their villages. GPS’s accuracy and power to infer the biogeography of worldwide individuals down to their country or, in some cases, village, of origin, underscores the promise of admixture-based methods for biogeography and has ramifications for genetic ancestry testing.


Genome Biology and Evolution | 2013

The GenoChip: A New Tool for Genetic Anthropology

Eran Elhaik; Elliott Greenspan; Sean Staats; Thomas Krahn; Chris Tyler-Smith; Yali Xue; Sergio Tofanelli; Paolo Francalacci; Francesco Cucca; Luca Pagani; Li Jin; Hui Li; Theodore G. Schurr; Bennett Greenspan; R. Spencer Wells

The Genographic Project is an international effort aimed at charting human migratory history. The project is nonprofit and nonmedical, and, through its Legacy Fund, supports locally led efforts to preserve indigenous and traditional cultures. Although the first phase of the project was focused on uniparentally inherited markers on the Y-chromosome and mitochondrial DNA (mtDNA), the current phase focuses on markers from across the entire genome to obtain a more complete understanding of human genetic variation. Although many commercial arrays exist for genome-wide single-nucleotide polymorphism (SNP) genotyping, they were designed for medical genetic studies and contain medically related markers that are inappropriate for global population genetic studies. GenoChip, the Genographic Project’s new genotyping array, was designed to resolve these issues and enable higher resolution research into outstanding questions in genetic anthropology. The GenoChip includes ancestry informative markers obtained for over 450 human populations, an ancient human (Saqqaq), and two archaic hominins (Neanderthal and Denisovan) and was designed to identify all known Y-chromosome and mtDNA haplogroups. The chip was carefully vetted to avoid inclusion of medically relevant markers. To demonstrate its capabilities, we compared the FST distributions of GenoChip SNPs to those of two commercial arrays. Although all arrays yielded similarly shaped (inverse J) FST distributions, the GenoChip autosomal and X-chromosomal distributions had the highest mean FST, attesting to its ability to discern subpopulations. The chip performances are illustrated in a principal component analysis for 14 worldwide populations. In summary, the GenoChip is a dedicated genotyping platform for genetic anthropology. With an unprecedented number of approximately 12,000 Y-chromosomal and approximately 3,300 mtDNA SNPs and over 130,000 autosomal and X-chromosomal SNPs without any known health, medical, or phenotypic relevance, the GenoChip is a useful tool for genetic anthropology and population genetics.


Genome Biology and Evolution | 2013

The Missing Link of Jewish European Ancestry: Contrasting the Rhineland and the Khazarian Hypotheses

Eran Elhaik

The question of Jewish ancestry has been the subject of controversy for over two centuries and has yet to be resolved. The “Rhineland hypothesis” depicts Eastern European Jews as a “population isolate” that emerged from a small group of German Jews who migrated eastward and expanded rapidly. Alternatively, the “Khazarian hypothesis” suggests that Eastern European Jews descended from the Khazars, an amalgam of Turkic clans that settled the Caucasus in the early centuries CE and converted to Judaism in the 8th century. Mesopotamian and Greco–Roman Jews continuously reinforced the Judaized empire until the 13th century. Following the collapse of their empire, the Judeo–Khazars fled to Eastern Europe. The rise of European Jewry is therefore explained by the contribution of the Judeo–Khazars. Thus far, however, the Khazars’ contribution has been estimated only empirically, as the absence of genome-wide data from Caucasus populations precluded testing the Khazarian hypothesis. Recent sequencing of modern Caucasus populations prompted us to revisit the Khazarian hypothesis and compare it with the Rhineland hypothesis. We applied a wide range of population genetic analyses to compare these two hypotheses. Our findings support the Khazarian hypothesis and portray the European Jewish genome as a mosaic of Near Eastern-Caucasus, European, and Semitic ancestries, thereby consolidating previous contradictory reports of Jewish ancestry. We further describe a major difference among Caucasus populations explained by the early presence of Judeans in the Southern and Central Caucasus. Our results have important implications for the demographic forces that shaped the genetic diversity in the Caucasus and for medical studies.


Molecular Biology and Evolution | 2009

Can GC content at third-codon positions be used as a proxy for isochore composition?

Eran Elhaik; Giddy Landan; Dan Graur

The isochore theory depicts the genomes of warm-blooded vertebrates as a mosaic of long genomic regions that are characterized by relatively homogeneous GC content. In the absence of genomic data, the GC content at third-codon positions of protein-coding genes (GC3) was commonly used as a proxy for the GC content of isochores. Oddly, in the postgenomic era, GC3 is still sometimes used as a proxy for the GC composition of isochores. Here, we use genic and genomic sequences from human, chimpanzee, cow, mouse, rat, chicken, and zebrafish to show that GC3 only explains a very small proportion of the variation in GC content of long genomic sequences flanking the genes (GCf), and what little correlation there is between GC3 and GCf was found to decay rapidly with distance from the gene. The coefficient of variation of GC3 was found to be much larger than that of GCf and, therefore, GC3 and GCf values are not comparable with each other. Comparisons of orthologous gene pairs from 1) human and chimpanzee and 2) mouse and rat show strong correlations between their GC3 values, but very weak correlations between their GCf values. We conclude that the GC content of third-codon position cannot be used as stand-in for isochoric composition.


Genome Biology and Evolution | 2013

Cross-Species Analysis of Genic GC3 Content and DNA Methylation Patterns

Tatiana V. Tatarinova; Eran Elhaik; Matteo Pellegrini

The GC content in the third codon position (GC3) exhibits a unimodal distribution in many plant and animal genomes. Interestingly, grasses and homeotherm vertebrates exhibit a unique bimodal distribution. High GC3 was previously found to be associated with variable expression, higher frequency of upstream TATA boxes, and an increase of GC3 from 5′ to 3′. Moreover, GC3-rich genes are predominant in certain gene classes and are enriched in CpG dinucleotides that are potential targets for methylation. Based on the GC3 bimodal distribution we hypothesize that GC3 has a regulatory role involving methylation and gene expression. To test that hypothesis, we selected diverse taxa (rice, thale cress, bee, and human) that varied in the modality of their GC3 distribution and tested the association between GC3, DNA methylation, and gene expression. We examine the relationship between cytosine methylation levels and GC3, gene expression, genome signature, gene length, and other gene compositional features. We find a strong negative correlation (Pearson’s correlation coefficient r = −0.67, P value < 0.0001) between GC3 and genic CpG methylation. The comparison between 5′-3′ gradients of CG3-skew and genic methylation for the taxa in the study suggests interplay between gene-body methylation and transcription-coupled cytosine deamination effect. Compositional features are correlated with methylation levels of genes in rice, thale cress, human, bee, and fruit fly (which acts as an unmethylated control). These patterns allow us to generate evolutionary hypotheses about the relationships between GC3 and methylation and how these affect expression patterns. Specifically, we propose that the opposite effects of methylation and compositional gradients along coding regions of GC3-poor and GC3-rich genes are the products of several competing processes.

Collaboration


Dive into the Eran Elhaik's collaboration.

Top Co-Authors

Avatar

Dan Graur

University of Houston

View shared research outputs
Top Co-Authors

Avatar

Tatiana V. Tatarinova

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Monica Munoz-Torres

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cameron R. Currie

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge