Dan L. Nicolae
University of Chicago
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dan L. Nicolae.
Nature | 2001
Yasunori Ogura; Denise K. Bonen; Naohiro Inohara; Dan L. Nicolae; Felicia F. Chen; Richard Ramos; Heidi M. Britton; Thomas Moran; Reda Karaliuskas; Richard H. Duerr; Jean-Paul Achkar; Steven R. Brant; Theodore M. Bayless; Barbara S. Kirschner; Stephen B. Hanauer; Gabriel Núñez; Judy H. Cho
Crohns disease is a chronic inflammatory disorder of the gastrointestinal tract, which is thought to result from the effect of environmental factors in a genetically predisposed host. A gene location in the pericentromeric region of chromosome 16, IBD1, that contributes to susceptibility to Crohns disease has been established through multiple linkage studies, but the specific gene(s) has not been identified. NOD2, a gene that encodes a protein with homology to plant disease resistance gene products is located in the peak region of linkage on chromosome 16 (ref. 7). Here we show, by using the transmission disequilibium test and case-control analysis, that a frameshift mutation caused by a cytosine insertion, 3020insC, which is expected to encode a truncated NOD2 protein, is associated with Crohns disease. Wild-type NOD2 activates nuclear factor NF-κB, making it responsive to bacterial lipopolysaccharides; however, this induction was deficient in mutant NOD2. These results implicate NOD2 in susceptibility to Crohns disease, and suggest a link between an innate immune response to bacterial components and development of disease.
Science | 2006
Richard H. Duerr; Kent D. Taylor; Steven R. Brant; John D. Rioux; Mark S. Silverberg; Mark J. Daly; A. Hillary Steinhart; Clara Abraham; Miguel Regueiro; Anne M. Griffiths; Themistocles Dassopoulos; Alain Bitton; Huiying Yang; Stephan R. Targan; Lisa W. Datta; Emily O. Kistner; L. Philip Schumm; Annette Lee; Peter K. Gregersen; M. Michael Barmada; Jerome I. Rotter; Dan L. Nicolae; Judy H. Cho
The inflammatory bowel diseases Crohns disease and ulcerative colitis are common, chronic disorders that cause abdominal pain, diarrhea, and gastrointestinal bleeding. To identify genetic factors that might contribute to these disorders, we performed a genome-wide association study. We found a highly significant association between Crohns disease and the IL23R gene on chromosome 1p31, which encodes a subunit of the receptor for the proinflammatory cytokine interleukin-23. An uncommon coding variant (rs11209026, c.1142G>A, p.Arg381Gln) confers strong protection against Crohns disease, and additional noncoding IL23R variants are independently associated. Replication studies confirmed IL23R associations in independent cohorts of patients with Crohns disease or ulcerative colitis. These results and previous studies on the proinflammatory role of IL-23 prioritize this signaling pathway as a therapeutic target in inflammatory bowel disease.
Nature Genetics | 2008
Jeffrey C. Barrett; Sarah Hansoul; Dan L. Nicolae; Judy H. Cho; Richard H. Duerr; John D. Rioux; Steven R. Brant; Mark S. Silverberg; Kent D. Taylor; M. Michael Barmada; Alain Bitton; Themistocles Dassopoulos; Lisa W. Datta; Todd Green; Anne M. Griffiths; Emily O. Kistner; Miguel Regueiro; Jerome I. Rotter; L. Philip Schumm; A. Hillary Steinhart; Stephan R. Targan; Ramnik J. Xavier; Cécile Libioulle; Cynthia Sandor; Mark Lathrop; Jacques Belaiche; Olivier Dewit; Ivo Gut; Simon Heath; Debby Laukens
Several risk factors for Crohns disease have been identified in recent genome-wide association studies. To advance gene discovery further, we combined data from three studies on Crohns disease (a total of 3,230 cases and 4,829 controls) and carried out replication in 3,664 independent cases with a mixture of population-based and family-based controls. The results strongly confirm 11 previously reported loci and provide genome-wide significant evidence for 21 additional loci, including the regions containing STAT3, JAK2, ICOSLG, CDKAL1 and ITLN1. The expanded molecular understanding of the basis of this disease offers promise for informed therapeutic development.
Nature Genetics | 2007
John D. Rioux; Ramnik J. Xavier; Kent D. Taylor; Mark S. Silverberg; Philippe Goyette; Alan Huett; Todd Green; Petric Kuballa; M. Michael Barmada; Lisa W. Datta; Yin Yao Shugart; Anne M. Griffiths; Stephan R. Targan; Andrew Ippoliti; Edmond Jean Bernard; Ling Mei; Dan L. Nicolae; Miguel Regueiro; L. Philip Schumm; A. Hillary Steinhart; Jerome I. Rotter; Richard H. Duerr; Judy H. Cho; Mark J. Daly; Steven R. Brant
We present a genome-wide association study of ileal Crohn disease and two independent replication studies that identify several new regions of association to Crohn disease. Specifically, in addition to the previously established CARD15 and IL23R associations, we identified strong and significantly replicated associations (combined P < 10−10) with an intergenic region on 10q21.1 and a coding variant in ATG16L1, the latter of which was also recently reported by another group. We also report strong associations with independent replication to variation in the genomic regions encoding PHOX2B, NCF4 and a predicted gene on 16q24.1 (FAM92B). Finally, we demonstrate that ATG16L1 is expressed in intestinal epithelial cell lines and that functional knockdown of this gene abrogates autophagy of Salmonella typhimurium. Together, these findings suggest that autophagy and host cell responses to intracellular microbes are involved in the pathogenesis of Crohn disease.
PLOS Genetics | 2010
Dan L. Nicolae; Eric R. Gamazon; Wei Zhang; Shiwei Duan; M. Eileen Dolan; Nancy J. Cox
Although genome-wide association studies (GWAS) of complex traits have yielded more reproducible associations than had been discovered using any other approach, the loci characterized to date do not account for much of the heritability to such traits and, in general, have not led to improved understanding of the biology underlying complex phenotypes. Using a web site we developed to serve results of expression quantitative trait locus (eQTL) studies in lymphoblastoid cell lines from HapMap samples (http://www.scandb.org), we show that single nucleotide polymorphisms (SNPs) associated with complex traits (from http://www.genome.gov/gwastudies/) are significantly more likely to be eQTLs than minor-allele-frequency–matched SNPs chosen from high-throughput GWAS platforms. These findings are robust across a range of thresholds for establishing eQTLs (p-values from 10−4–10−8), and a broad spectrum of human complex traits. Analyses of GWAS data from the Wellcome Trust studies confirm that annotating SNPs with a score reflecting the strength of the evidence that the SNP is an eQTL can improve the ability to discover true associations and clarify the nature of the mechanism driving the associations. Our results showing that trait-associated SNPs are more likely to be eQTLs and that application of this information can enhance discovery of trait-associated SNPs for complex phenotypes raise the possibility that we can utilize this information both to increase the heritability explained by identifiable genetic factors and to gain a better understanding of the biology underlying complex traits.
Nature Genetics | 2011
Dara G. Torgerson; Elizabeth J. Ampleford; Grace Y. Chiu; W. James Gauderman; Christopher R. Gignoux; Penelope E. Graves; Blanca E. Himes; A. Levin; Rasika A. Mathias; Dana B. Hancock; James W. Baurley; Celeste Eng; Debra A. Stern; Juan C. Celedón; Nicholas Rafaels; Daniel Capurso; David V. Conti; Lindsey A. Roth; Manuel Soto-Quiros; Alkis Togias; Xingnan Li; Rachel A. Myers; Isabelle Romieu; David Van Den Berg; Donglei Hu; Nadia N. Hansel; Ryan D. Hernandez; Elliott Israel; Muhammad T. Salam; Joshua M Galanter
Asthma is a common disease with a complex risk architecture including both genetic and environmental factors. We performed a meta-analysis of North American genome-wide association studies of asthma in 5,416 individuals with asthma (cases) including individuals of European American, African American or African Caribbean, and Latino ancestry, with replication in an additional 12,649 individuals from the same ethnic groups. We identified five susceptibility loci. Four were at previously reported loci on 17q21, near IL1RL1, TSLP and IL33, but we report for the first time, to our knowledge, that these loci are associated with asthma risk in three ethnic groups. In addition, we identified a new asthma susceptibility locus at PYHIN1, with the association being specific to individuals of African descent (P = 3.9 × 10−9). These results suggest that some asthma susceptibility loci are robust to differences in ancestry when sufficiently large samples sizes are investigated, and that ancestry-specific associations also contribute to the complex genetic architecture of asthma.
Nature Genetics | 1999
Nancy J. Cox; Mike Frigge; Dan L. Nicolae; Patrick Concannon; Craig L. Hanis; Graeme I. Bell; Augustine Kong
Complex disorders such as diabetes, cardiovascular disease, asthma, hypertension and psychiatric illnesses account for a large and disproportionate share of health care costs, but remain poorly characterized with respect to aetiology. The transmission of such disorders is complex, reflecting the actions and interactions of multiple genetic and environmental factors. Genetic analyses that allow for the simultaneous consideration of susceptibility from multiple regions may improve the ability to map genes for complex disorders, but such analyses are currently computationally intensive and narrowly focused. We describe here an approach to assessing the evidence for statistical interactions between unlinked regions that allows multipoint allele–sharing analysis to take the evidence for linkage at one region into account in assessing the evidence for linkage over the rest of the genome. Using this method, we show that the interaction of genes on chromosomes 2 (NIDDM1) and 15 (near CYP19) makes a contribution to susceptibility to type 2 diabetes in Mexican Americans from Starr County, Texas.
The New England Journal of Medicine | 2008
Carole Ober; Zheng Tan; Ying Sun; Jennifer Possick; Lin Pan; Raluca Nicolae; Sadie Radford; Rodney Parry; Andrea Heinzmann; Klaus A. Deichmann; Lucille A. Lester; James E. Gern; Robert F. Lemanske; Dan L. Nicolae; Jack A. Elias; Geoffrey L. Chupp
BACKGROUND The chitinase-like protein YKL-40 is involved in inflammation and tissue remodeling. We recently showed that serum YKL-40 levels were elevated in patients with asthma and were correlated with severity, thickening of the subepithelial basement membrane, and pulmonary function. We hypothesized that single-nucleotide polymorphisms (SNPs) that affect YKL-40 levels also influence asthma status and lung function. METHODS We carried out a genomewide association study of serum YKL-40 levels in a founder population of European descent, the Hutterites, and then tested for an association between an implicated SNP and asthma and lung function. One associated variant was genotyped in a birth cohort at high risk for asthma, in which YKL-40 levels were measured from birth through 5 years of age, and in two populations of unrelated case patients of European descent with asthma and controls. RESULTS A promoter SNP (-131C-->G) in CHI3L1, the chitinase 3-like 1 gene encoding YKL-40, was associated with elevated serum YKL-40 levels (P=1.1 x 10(-13)), asthma (P=0.047), bronchial hyperresponsiveness (P=0.002), and measures of pulmonary function (P=0.046 to 0.002) in the Hutterites. The same SNP could be used to predict the presence of asthma in the two case-control populations (combined P=1.2 x 10(-5)) and serum YKL-40 levels at birth (in cord-blood specimens) through 5 years of age in the birth cohort (P=8.9 x 10(-3) to 2.5 x 10(-4)). CONCLUSIONS CHI3L1 is a susceptibility gene for asthma, bronchial hyperresponsiveness, and reduced lung function, and elevated circulating YKL-40 levels are a biomarker for asthma and decline in lung function.
Trends in Genetics | 2002
Zhenglong Gu; Dan L. Nicolae; Henry H-S. Lu; Wen-Hsiung Li
For more than 30 years, expression divergence has been considered as a major reason for retaining duplicated genes in a genome, but how often and how fast duplicate genes diverge in expression has not been studied at the genomic level. Using yeast microarray data, we show that expression divergence between duplicate genes is significantly correlated with their synonymous divergence (K(S)) and also with their nonsynonymous divergence (K(A)) if K(A) </= 0.3. Thus, expression divergence increases with evolutionary time, and K(A) is initially coupled with expression divergence. More interestingly, a large proportion of duplicate genes have diverged quickly in expression and the vast majority of gene pairs eventually become divergent in expression. Indeed, more than 40% of gene pairs show expression divergence even when K(S) is </= 0.10, and this proportion becomes >80% for K(S) > 1.5. Only a small fraction of ancient gene pairs do not show expression divergence.
The New England Journal of Medicine | 2013
Minal Çalışkan; Yury A. Bochkov; Eskil Kreiner-Møller; Klaus Bønnelykke; Michelle M. Stein; Gaixin Du; Hans Bisgaard; Daniel J. Jackson; James E. Gern; Robert F. Lemanske; Dan L. Nicolae; Carole Ober
BACKGROUND Both genetic variation at the 17q21 locus and virus-induced respiratory wheezing illnesses are associated with the development of asthma. Our aim was to determine the effects of these two factors on the risk of asthma in the Childhood Origins of Asthma (COAST) and the Copenhagen Prospective Study on Asthma in Childhood (COPSAC) birth cohorts. METHODS We tested genotypes at the 17q21 locus for associations with asthma and with human rhinovirus (HRV) and respiratory syncytial virus (RSV) wheezing illnesses and tested for interactions between 17q21 genotypes and HRV and RSV wheezing illnesses with respect to the risk of asthma. Finally, we examined genotype-specific expression of 17q21 genes in unstimulated and HRV-stimulated peripheral-blood mononuclear cells (PBMCs). RESULTS The 17q21 variants were associated with HRV wheezing illnesses in early life, but not with RSV wheezing illnesses. The associations of 17q21 variants with asthma were restricted to children who had had HRV wheezing illnesses, resulting in a significant interaction effect with respect to the risk of asthma. Moreover, the expression levels of ORMDL3 and of GSDMB were significantly increased in HRV-stimulated PBMCs, as compared with unstimulated PBMCs. The expression of these genes was associated with 17q21 variants in both conditions, although the increase with exposure to HRV was not genotype-specific. CONCLUSIONS Variants at the 17q21 locus were associated with asthma in children who had had HRV wheezing illnesses and with expression of two genes at this locus. The expression levels of both genes increased in response to HRV stimulation, although the relative increase was not associated with the 17q21 genotypes. (Funded by the National Institutes of Health.).