Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nancy J. Cox is active.

Publication


Featured researches published by Nancy J. Cox.


Science | 2009

Transmission and Pathogenesis of Swine-Origin 2009 A(H1N1) Influenza Viruses in Ferrets and Mice

Taronna R. Maines; Akila Jayaraman; Jessica A. Belser; Debra A. Wadford; Claudia Pappas; Hui Zeng; Kortney M. Gustin; Melissa B. Pearce; Karthik Viswanathan; Zachary Shriver; Rahul Raman; Nancy J. Cox; Ram Sasisekharan; Jacqueline M. Katz; Terrence M. Tumpey

“Swine Flu” Pathology The clinical spectrum of disease caused by the swine-origin 2009 A(H1N1) influenza virus and its transmissibility are not completely understood. Munster et al. (p. 481; published online 2 July) and Maines et al. (p. 484; published online 2 July) used ferrets, an established model for human influenza, to evaluate the pathogenesis and transmissibility of a selection of 2009 A(H1N1) virus isolates compared with representative seasonal H1N1 viruses. The results help explain the atypical symptoms seen so far, including the gastrointestinal distress and vomiting observed in many patients. Although results were variable, it seems that the 2009 A(H1N1) virus may be less efficiently transmitted by respiratory droplets in comparison to the highly transmissible seasonal H1N1 virus, suggesting that additional virus adaptation in mammals may be required before we see phenotypes observed in earlier pandemics. Animal experiments compare the dynamics and effects of the virus causing the 2009 flu outbreak to those of seasonal H1N1 flu. Recent reports of mild to severe influenza-like illness in humans caused by a novel swine-origin 2009 A(H1N1) influenza virus underscore the need to better understand the pathogenesis and transmission of these viruses in mammals. In this study, selected 2009 A(H1N1) influenza isolates were assessed for their ability to cause disease in mice and ferrets and compared with a contemporary seasonal H1N1 virus for their ability to transmit to naïve ferrets through respiratory droplets. In contrast to seasonal influenza H1N1 virus, 2009 A(H1N1) influenza viruses caused increased morbidity, replicated to higher titers in lung tissue, and were recovered from the intestinal tract of intranasally inoculated ferrets. The 2009 A(H1N1) influenza viruses exhibited less efficient respiratory droplet transmission in ferrets in comparison with the highly transmissible phenotype of a seasonal H1N1 virus. Transmission of the 2009 A(H1N1) influenza viruses was further corroborated by characterizing the binding specificity of the viral hemagglutinin to the sialylated glycan receptors (in the human host) by use of dose-dependent direct receptor-binding and human lung tissue–binding assays.


The Journal of Infectious Diseases | 2007

Surveillance of Resistance to Adamantanes among Influenza A(H3N2) and A(H1N1) Viruses Isolated Worldwide

Varough Deyde; Xiyan Xu; Rick A. Bright; Michael Shaw; Catherine B. Smith; Ye Zhang; Yuelong Shu; Larisa V. Gubareva; Nancy J. Cox; Alexander Klimov

Our previous reports demonstrated an alarming increase in resistance to adamantanes among influenza A(H3N2) viruses isolated in 2001-2005. To continue monitoring drug resistance, we conducted a comprehensive analysis of influenza A(H3N2) and A(H1N1) viruses isolated globally in 2005-2006. The results obtained by pyrosequencing indicate that 96.4% (n=761) of A(H3N2) viruses circulating in the United States were adamantane resistant. Drug resistance has reached 100% among isolates from some Asian countries. Analysis of correlation between the appearance of drug resistance and the evolutionary pathway of the hemagglutinin (HA) gene suggests at least 2 separate introductions of resistance into circulating populations that gave rise to identifiable subclades. It also indicates that resistant A(H3N2) viruses may have emerged in Asia in late 2001. Among A(H1N1) viruses isolated worldwide, resistance reached 15.5% in 2005-2006; in the United States alone, it was 4.0%. Phylogenetic analysis of the HA and M genes indicates that the acquisition of resistance in A(H1N1) viruses can be linked to a specific genetic group and was not a result of reassortment between A(H3N2) and A(H1N1) viruses. The results of the study highlight the necessity of close monitoring of resistance to existing antivirals as wells as the need for new therapeutics.


PLOS Pathogens | 2008

Genetic Compatibility and Virulence of Reassortants Derived from Contemporary Avian H5N1 and Human H3N2 Influenza A Viruses

Li-Mei Chen; C. Todd Davis; Hong-Bo Zhou; Nancy J. Cox; Ruben O. Donis

The segmented structure of the influenza virus genome plays a pivotal role in its adaptation to new hosts and the emergence of pandemics. Despite concerns about the pandemic threat posed by highly pathogenic avian influenza H5N1 viruses, little is known about the biological properties of H5N1 viruses that may emerge following reassortment with contemporary human influenza viruses. In this study, we used reverse genetics to generate the 63 possible virus reassortants derived from H5N1 and H3N2 viruses, containing the H5N1 surface protein genes, and analyzed their viability, replication efficiency, and mouse virulence. Specific constellations of avian–human viral genes proved deleterious for viral replication in cell culture, possibly due to disruption of molecular interaction networks. In particular, striking phenotypes were noted with heterologous polymerase subunits, as well as NP and M, or NS. However, nearly one-half of the reassortants replicated with high efficiency in vitro, revealing a high degree of compatibility between avian and human virus genes. Thirteen reassortants displayed virulent phenotypes in mice and may pose the greatest threat for mammalian hosts. Interestingly, one of the most pathogenic reassortants contained avian PB1, resembling the 1957 and 1968 pandemic viruses. Our results reveal the broad spectrum of phenotypes associated with H5N1/H3N2 reassortment and a possible role for the avian PB1 in the emergence of pandemic influenza. These observations have important implications for risk assessment of H5N1 reassortant viruses detected in surveillance programs.


Virology | 2011

Effect of receptor binding domain mutations on receptor binding and transmissibility of avian influenza H5N1 viruses.

Taronna R. Maines; Li-Mei Chen; Neal Van Hoeven; Terrence M. Tumpey; Ola Blixt; Jessica A. Belser; Kortney M. Gustin; Melissa B. Pearce; Claudia Pappas; James Stevens; Nancy J. Cox; James C. Paulson; Rahul Raman; Ram Sasisekharan; Jacqueline M. Katz; Ruben O. Donis

Although H5N1 influenza viruses have been responsible for hundreds of human infections, these avian influenza viruses have not fully adapted to the human host. The lack of sustained transmission in humans may be due, in part, to their avian-like receptor preference. Here, we have introduced receptor binding domain mutations within the hemagglutinin (HA) gene of two H5N1 viruses and evaluated changes in receptor binding specificity by glycan microarray analysis. The impact of these mutations on replication efficiency was assessed in vitro and in vivo. Although certain mutations switched the receptor binding preference of the H5 HA, the rescued mutant viruses displayed reduced replication in vitro and delayed peak virus shedding in ferrets. An improvement in transmission efficiency was not observed with any of the mutants compared to the parental viruses, indicating that alternative molecular changes are required for H5N1 viruses to fully adapt to humans and to acquire pandemic capability.


PLOS ONE | 2011

Effect of D222G Mutation in the Hemagglutinin Protein on Receptor Binding, Pathogenesis and Transmissibility of the 2009 Pandemic H1N1 Influenza Virus

Jessica A. Belser; Akila Jayaraman; Rahul Raman; Claudia Pappas; Hui Zeng; Nancy J. Cox; Jacqueline M. Katz; Ram Sasisekharan; Terrence M. Tumpey

Influenza viruses isolated during the 2009 H1N1 pandemic generally lack known molecular determinants of virulence associated with previous pandemic and highly pathogenic avian influenza viruses. The frequency of the amino acid substitution D222G in the hemagglutinin (HA) of 2009 H1N1 viruses isolated from severe but not mild human cases represents the first molecular marker associated with enhanced disease. To assess the relative contribution of this substitution in virus pathogenesis, transmission, and tropism, we introduced D222G by reverse genetics in the wild-type HA of the 2009 H1N1 virus, A/California/04/09 (CA/04). A dose-dependent glycan array analysis with the D222G virus showed a modest reduction in the binding avidity to human-like (α2-6 sialylated glycan) receptors and an increase in the binding to avian-like (α2-3 sialylated glycan) receptors in comparison with wild-type virus. In the ferret pathogenesis model, the D222G mutant virus was found to be similar to wild-type CA/04 virus with respect to lethargy, weight loss and replication efficiency in the upper and lower respiratory tract. Moreover, based on viral detection, the respiratory droplet transmission properties of these two viruses were found to be similar. The D222G virus failed to productively infect mice inoculated by the ocular route, but exhibited greater viral replication and weight loss than wild-type CA/04 virus in mice inoculated by the intranasal route. In a more relevant human cell model, D222G virus replicated with delayed kinetics compared with wild-type virus but to higher titer in human bronchial epithelial cells. These findings suggest that although the D222G mutation does not influence virus transmission, it may be considered a molecular marker for enhanced replication in certain cell types.


Clinical Infectious Diseases | 2011

Detecting 2009 Pandemic Influenza A (H1N1) Virus Infection: Availability of Diagnostic Testing Led to Rapid Pandemic Response

Daniel B. Jernigan; Stephen Lindstrom; J .R. Johnson; J.D. Miller; M. Hoelscher; R. Humes; R. Shively; Lynnette Brammer; S. A. Burke; J. M. Villanueva; A. Balish; Timothy M. Uyeki; Desiree Mustaquim; Amber Bishop; J. H. Handsfield; R. Astles; Xiyan Xu; Alexander Klimov; Nancy J. Cox; Michael Shaw

Diagnostic tests for detecting emerging influenza virus strains with pandemic potential are critical for directing global influenza prevention and control activities. In 2008, the Centers for Disease Control and Prevention received US Food and Drug Administration approval for a highly sensitive influenza polymerase chain reaction (PCR) assay. Devices were deployed to public health laboratories in the United States and globally. Within 2 weeks of the first recognition of 2009 pandemic influenza H1N1, the Centers for Disease Control and Prevention developed and began distributing a new approved pandemic influenza H1N1 PCR assay, which used the previously deployed device platform to meet a >8-fold increase in specimen submissions. Rapid antigen tests were widely used by clinicians at the point of care; however, test sensitivity was low (40%-69%). Many clinical laboratories developed their own pandemic influenza H1N1 PCR assays to meet clinician demand. Future planning efforts should identify ways to improve availability of reliable testing to manage patient care and approaches for optimal use of molecular testing for detecting and controlling emerging influenza virus strains.


Clinical Infectious Diseases | 2013

Human Infections With Influenza A(H3N2) Variant Virus in the United States, 2011–2012

Scott Epperson; Michael A. Jhung; Shawn Richards; Patricia Quinlisk; Lauren Ball; Mària Moll; Rachelle Boulton; Loretta Haddy; Matthew Biggerstaff; Lynnette Brammer; Susan Trock; Erin Burns; Thomas M. Gomez; Karen K. Wong; Jackie Katz; Stephen Lindstrom; Alexander Klimov; Joseph S. Bresee; Daniel B. Jernigan; Nancy J. Cox; Lyn Finelli

BACKGROUND.u2003During August 2011-April 2012, 13 human infections with influenza A(H3N2) variant (H3N2v) virus were identified in the United States; 8 occurred in the prior 2 years. This virus differs from previous variant influenza viruses in that it contains the matrix (M) gene from the Influenza A(H1N1)pdm09 pandemic influenza virus. METHODS.u2003A case was defined as a person with laboratory-confirmed H3N2v virus infection. Cases and contacts were interviewed to determine exposure to swine and other animals and to assess potential person-to-person transmission. RESULTS.u2003Median age of cases was 4 years, and 12 of 13 (92%) were children. Pig exposure was identified in 7 (54%) cases. Six of 7 cases with swine exposure (86%) touched pigs, and 1 (14%) was close to pigs without known direct contact. Six cases had no swine exposure, including 2 clusters of suspected person-to-person transmission. All cases had fever; 12 (92%) had respiratory symptoms, and 3 (23%) were hospitalized for influenza. All 13 cases recovered. CONCLUSIONS.u2003H3N2v virus infections were identified at a high rate from August 2011 to April 2012, and cases without swine exposure were identified in influenza-like illness outbreaks, indicating that limited person-to-person transmission likely occurred. Variant influenza viruses rarely result in sustained person-to-person transmission; however, the potential for this H3N2v virus to transmit efficiently is of concern. With minimal preexisting immunity in children and the limited cross-protective effect from seasonal influenza vaccine, the majority of children are susceptible to infection with this novel influenza virus.


Journal of Virology | 2013

Pathogenesis, Transmissibility, and Ocular Tropism of a Highly Pathogenic Avian Influenza A (H7N3) Virus Associated with Human Conjunctivitis

Jessica A. Belser; Charles T. Davis; A. Balish; L. E. Edwards; Hui Zeng; Taronna R. Maines; Kortney M. Gustin; I. L. Martinez; R. Fasce; Nancy J. Cox; Jacqueline M. Katz; Terrence M. Tumpey

ABSTRACT H7 subtype influenza A viruses, responsible for numerous outbreaks in land-based poultry in Europe and the Americas, have caused over 100 cases of confirmed or presumed human infection over the last decade. The emergence of a highly pathogenic avian influenza H7N3 virus in poultry throughout the state of Jalisco, Mexico, resulting in two cases of human infection, prompted us to examine the virulence of this virus (A/Mexico/InDRE7218/2012 [MX/7218]) and related avian H7 subtype viruses in mouse and ferret models. Several high- and low-pathogenicity H7N3 and H7N9 viruses replicated efficiently in the respiratory tract of mice without prior adaptation following intranasal inoculation, but only MX/7218 virus caused lethal disease in this species. H7N3 and H7N9 viruses were also detected in the mouse eye following ocular inoculation. Virus from both H7N3 and H7N9 subtypes replicated efficiently in the upper and lower respiratory tracts of ferrets; however, only MX/7218 virus infection caused clinical signs and symptoms and was capable of transmission to naive ferrets in a direct-contact model. Similar to other highly pathogenic H7 viruses, MX/7218 replicated to high titers in human bronchial epithelial cells, yet it downregulated numerous genes related to NF-κB-mediated signaling transduction. These findings indicate that the recently isolated North American lineage H7 subtype virus associated with human conjunctivitis is capable of causing severe disease in mice and spreading to naive-contact ferrets, while concurrently retaining the ability to replicate within ocular tissue and allowing the eye to serve as a portal of entry.


The Journal of Infectious Diseases | 2015

Characterization of Drug-Resistant Influenza A(H7N9) Variants Isolated From an Oseltamivir-Treated Patient in Taiwan

Henju Marjuki; Vasiliy P. Mishin; Anton P. Chesnokov; Joyce Jones; Juan A. De La Cruz; Katrina Sleeman; Daisuke Tamura; Ha T. Nguyen; Ho-Sheng Wu; Feng-Yee Chang; Ming-Tsan Liu; Alicia M. Fry; Nancy J. Cox; Julie M. Villanueva; Charles T. Davis; Larisa V. Gubareva

BACKGROUNDnPatients contracting influenza A(H7N9) infection often developed severe disease causing respiratory failure. Neuraminidase (NA) inhibitors (NAIs) are the primary option for treatment, but information on drug-resistance markers for influenza A(H7N9) is limited.nnnMETHODSnFour NA variants of A/Taiwan/1/2013(H7N9) virus containing a single substitution (NA-E119V, NA-I222K, NA-I222R, or NA-R292K) recovered from an oseltamivir-treated patient were tested for NAI susceptibility in vitro; their replicative fitness was evaluated in cell culture, mice, and ferrets.nnnRESULTSnNA-R292K led to highly reduced inhibition by oseltamivir and peramivir, while NA-E119V, NA-I222K, and NA-I222R caused reduced inhibition by oseltamivir. Mice infected with any virus showed severe clinical signs with high mortality rates. NA-I222K virus was the most virulent in mice, whereas virus lacking NA change (NA-WT) and NA-R292K virus seemed the least virulent. Sequence analysis suggests that PB2-S714N increased virulence of NA-I222K virus in mice; NS1-K126R, alone or in combination with PB2-V227M, produced contrasting effects in NA-WT and NA-R292K viruses. In ferrets, all viruses replicated to high titers in the upper respiratory tract but produced only mild illness. NA-R292K virus, showed reduced replicative fitness in this animal model.nnnCONCLUSIONSnOur data highlight challenges in assessment of the replicative fitness of H7N9 NA variants that emerged in NAI-treated patients.


PLOS ONE | 2011

Influenza A Virus Nucleoprotein Exploits Hsp40 to Inhibit PKR Activation

Kulbhushan Sharma; Shashank Tripathi; Priya Ranjan; Purnima Kumar; Rebecca Garten; Varough Deyde; Jacqueline M. Katz; Nancy J. Cox; Renu B. Lal; Suryaprakash Sambhara; Sunil K. Lal

Background Double-stranded RNA dependent protein kinase (PKR) is a key regulator of the anti-viral innate immune response in mammalian cells. PKR activity is regulated by a 58 kilo Dalton cellular inhibitor (P58IPK), which is present in inactive state as a complex with Hsp40 under normal conditions. In case of influenza A virus (IAV) infection, P58IPK is known to dissociate from Hsp40 and inhibit PKR activation. However the influenza virus component responsible for PKR inhibition through P58IPK activation was hitherto unknown. Principal Findings Human heat shock 40 protein (Hsp40) was identified as an interacting partner of Influenza A virus nucleoprotein (IAV NP) using a yeast two-hybrid screen. This interaction was confirmed by co-immunoprecipitation studies from mammalian cells transfected with IAV NP expressing plasmid. Further, the IAV NP-Hsp40 interaction was validated in mammalian cells infected with various seasonal and pandemic strains of influenza viruses. Cellular localization studies showed that NP and Hsp40 co-localize primarily in the nucleus. During IAV infection in mammalian cells, expression of NP coincided with the dissociation of P58IPK from Hsp40 and decrease PKR phosphorylation. We observed that, plasmid based expression of NP in mammalian cells leads to decrease in PKR phosphorylation. Furthermore, inhibition of NP expression during influenza virus replication led to PKR activation and concomitant increase in eIF2α phosphorylation. Inhibition of NP expression also led to reduced IRF3 phosphorylation, enhanced IFN β production and concomitant reduction of virus replication. Taken together our data suggest that NP is the viral factor responsible for P58IPK activation and subsequent inhibition of PKR-mediated host response during IAV infection. Significance Our findings demonstrate a novel role of IAV NP in inhibiting PKR-mediated anti-viral host response and help us understand P58IPK mediated inhibition of PKR activity during IAV infection.

Collaboration


Dive into the Nancy J. Cox's collaboration.

Top Co-Authors

Avatar

Jacqueline M. Katz

National Center for Immunization and Respiratory Diseases

View shared research outputs
Top Co-Authors

Avatar

Ruben O. Donis

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Alexander Klimov

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Terrence M. Tumpey

National Center for Immunization and Respiratory Diseases

View shared research outputs
Top Co-Authors

Avatar

Jessica A. Belser

National Center for Immunization and Respiratory Diseases

View shared research outputs
Top Co-Authors

Avatar

Julie M. Villanueva

National Center for Immunization and Respiratory Diseases

View shared research outputs
Top Co-Authors

Avatar

Li-Mei Chen

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Stephen Lindstrom

National Center for Immunization and Respiratory Diseases

View shared research outputs
Top Co-Authors

Avatar

Taronna R. Maines

National Center for Immunization and Respiratory Diseases

View shared research outputs
Top Co-Authors

Avatar

Timothy M. Uyeki

Centers for Disease Control and Prevention

View shared research outputs
Researchain Logo
Decentralizing Knowledge