Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dan Sato is active.

Publication


Featured researches published by Dan Sato.


Iubmb Life | 2009

Methionine gamma-lyase: the unique reaction mechanism, physiological roles, and therapeutic applications against infectious diseases and cancers.

Dan Sato; Tomoyoshi Nozaki

Sulfur‐containing amino acids (SAAs) are essential components in many biological processes and ubiquitously distributed to all organisms. Both biosynthetic and catabolic pathways of SAAs are heterogeneous among organisms and between developmental stages, and regulated by the environmental changes. Limited lineage of organisms ranging from archaea to plants, but not human, possess a unique enzyme methionine gamma‐lyase (MGL, EC 4.4.1.11) to directly degrade SAA to α‐keto acids, ammonia, and volatile thiols. The reaction mechanisms and the physiological roles of this enzyme are partially demonstrated by the enzymological analyzes, structure determination, isotopic labeling of the intermediate metabolites, and functional analyzes of deficient mutants. MGL has been exploited as a drug target for the infectious diseases caused by parasitic protozoa and anaerobic periodontal bacteria. In addition, MGL has been utilized to develop therapeutic interventions of various cancers, by introducing recombinant proteins to deplete methionine essential for the growth of cancer cells. In this review, we discuss the current understanding of enzymological properties, putative physiological roles, and therapeutic applications of MGL.


BMC Genomics | 2011

Global analysis of gene expression in response to L-Cysteine deprivation in the anaerobic protozoan parasite Entamoeba histolytica

Afzal Husain; Ghulam Jeelani; Dan Sato; Tomoyoshi Nozaki

BackgroundEntamoeba histolytica, an enteric protozoan parasite, causes amebic colitis and extra intestinal abscesses in millions of inhabitants of endemic areas. E. histolytica completely lacks glutathione metabolism but possesses L-cysteine as the principle low molecular weight thiol. L-Cysteine is essential for the structure, stability, and various protein functions, including catalysis, electron transfer, redox regulation, nitrogen fixation, and sensing for regulatory processes. Recently, we demonstrated that in E. histolytica, L-cysteine regulates various metabolic pathways including energy, amino acid, and phospholipid metabolism.ResultsIn this study, employing custom-made Affymetrix microarrays, we performed time course (3, 6, 12, 24, and 48 h) gene expression analysis upon L-cysteine deprivation. We identified that out of 9,327 genes represented on the array, 290 genes encoding proteins with functions in metabolism, signalling, DNA/RNA regulation, electron transport, stress response, membrane transport, vesicular trafficking/secretion, and cytoskeleton were differentially expressed (≥3 fold) at one or more time points upon L-cysteine deprivation. Approximately 60% of these modulated genes encoded proteins of no known function and annotated as hypothetical proteins. We also attempted further functional analysis of some of the most highly modulated genes by L-cysteine depletion.ConclusionsTo our surprise, L-cysteine depletion caused only limited changes in the expression of genes involved in sulfur-containing amino acid metabolism and oxidative stress defense. In contrast, we observed significant changes in the expression of several genes encoding iron sulfur flavoproteins, a major facilitator super-family transporter, regulator of nonsense transcripts, NADPH-dependent oxido-reductase, short chain dehydrogenase, acetyltransferases, and various other genes involved in diverse cellular functions. This study represents the first genome-wide analysis of transcriptional changes induced by L-cysteine deprivation in protozoan parasites, and in eukaryotic organisms where L-cysteine represents the major intracellular thiol.


PLOS Neglected Tropical Diseases | 2012

Dramatic Increase in Glycerol Biosynthesis upon Oxidative Stress in the Anaerobic Protozoan Parasite Entamoeba histolytica

Afzal Husain; Dan Sato; Ghulam Jeelani; Tomoyoshi Soga; Tomoyoshi Nozaki

Entamoeba histolytica, a microaerophilic enteric protozoan parasite, causes amebic colitis and extra intestinal abscesses in millions of inhabitants of endemic areas. Trophozoites of E. histolytica are exposed to a variety of reactive oxygen and nitrogen species during infection. Since E. histolytica lacks key components of canonical eukaryotic anti-oxidative defense systems, such as catalase and glutathione system, alternative not-yet-identified anti-oxidative defense strategies have been postulated to be operating in E. histolytica. In the present study, we investigated global metabolic responses in E. histolytica in response to H2O2- and paraquat-mediated oxidative stress by measuring charged metabolites on capillary electrophoresis and time-of-flight mass spectrometry. We found that oxidative stress caused drastic modulation of metabolites involved in glycolysis, chitin biosynthesis, and nucleotide and amino acid metabolism. Oxidative stress resulted in the inhibition of glycolysis as a result of inactivation of several key enzymes, leading to the redirection of metabolic flux towards glycerol production, chitin biosynthesis, and the non-oxidative branch of the pentose phosphate pathway. As a result of the repression of glycolysis as evidenced by the accumulation of glycolytic intermediates upstream of pyruvate, and reduced ethanol production, the levels of nucleoside triphosphates were decreased. We also showed for the first time the presence of functional glycerol biosynthetic pathway in E. histolytica as demonstrated by the increased production of glycerol 3-phosphate and glycerol upon oxidative stress. We proposed the significance of the glycerol biosynthetic pathway as a metabolic anti-oxidative defense system in E. histolytica.


PLOS Neglected Tropical Diseases | 2011

Sulfate Activation in Mitosomes Plays an Important Role in the Proliferation of Entamoeba histolytica

Fumika Mi-ichi; Takashi Makiuchi; Atsushi Furukawa; Dan Sato; Tomoyoshi Nozaki

Mitochondrion-related organelles, mitosomes and hydrogenosomes, are found in a phylogenetically broad range of organisms. Their components and functions are highly diverse. We have previously shown that mitosomes of the anaerobic/microaerophilic intestinal protozoan parasite Entamoeba histolytica have uniquely evolved and compartmentalized a sulfate activation pathway. Although this confined metabolic pathway is the major function in E. histolytica mitosomes, their physiological role remains unknown. In this study, we examined the phenotypes of the parasites in which genes involved in the mitosome functions were suppressed by gene silencing, and showed that sulfate activation in mitosomes is important for sulfolipid synthesis and cell proliferation. We also demonstrated that both Cpn60 and unusual mitochondrial ADP/ATP transporter (mitochondria carrier family, MCF) are important for the mitosome functions. Immunoelectron microscopy demonstrated that the enzymes involved in sulfate activation, Cpn60, and mitochondrial carrier family were differentially distributed within the electron dense, double membrane-bounded organelles. The importance and topology of the components in E. histolytica mitosomes reinforce the notion that they are not “rudimentary” or “residual” mitochondria, but represent a uniquely evolved crucial organelle in E. histolytica.


Journal of Biological Chemistry | 2010

Two Atypical l-Cysteine-regulated NADPH-dependent Oxidoreductases Involved in Redox Maintenance, l-Cystine and Iron Reduction, and Metronidazole Activation in the Enteric Protozoan Entamoeba histolytica

Ghulam Jeelani; Afzal Husain; Dan Sato; Vahab Ali; Makoto Suematsu; Tomoyoshi Soga; Tomoyoshi Nozaki

We discovered novel catalytic activities of two atypical NADPH-dependent oxidoreductases (EhNO1/2) from the enteric protozoan parasite Entamoeba histolytica. EhNO1/2 were previously annotated as the small subunit of glutamate synthase (glutamine:2-oxoglutarate amidotransferase) based on similarity to authentic bacterial homologs. As E. histolytica lacks the large subunit of glutamate synthase, EhNO1/2 were presumed to play an unknown role other than glutamine/glutamate conversion. Transcriptomic and quantitative reverse PCR analyses revealed that supplementation or deprivation of extracellular l-cysteine caused dramatic up- or down-regulation, respectively, of EhNO2, but not EhNO1 expression. Biochemical analysis showed that these FAD- and 2[4Fe-4S]-containing enzymes do not act as glutamate synthases, a conclusion which was supported by phylogenetic analyses. Rather, they catalyze the NADPH-dependent reduction of oxygen to hydrogen peroxide and l-cystine to l-cysteine and also function as ferric and ferredoxin-NADP+ reductases. EhNO1/2 showed notable differences in substrate specificity and catalytic efficiency; EhNO1 had lower Km and higher kcat/Km values for ferric ion and ferredoxin than EhNO2, whereas EhNO2 preferred l-cystine as a substrate. In accordance with these properties, only EhNO1 was observed to physically interact with intrinsic ferredoxin. Interestingly, EhNO1/2 also reduced metronidazole, and E. histolytica transformants overexpressing either of these proteins were more sensitive to metronidazole, suggesting that EhNO1/2 are targets of this anti-amebic drug. To date, this is the first report to demonstrate that small subunit-like proteins of glutamate synthase could play an important role in redox maintenance, l-cysteine/l-cystine homeostasis, iron reduction, and the activation of metronidazole.


Journal of Biological Chemistry | 2010

Metabolome Analysis Revealed Increase in S-Methylcysteine and Phosphatidylisopropanolamine Synthesis upon l-Cysteine Deprivation in the Anaerobic Protozoan Parasite Entamoeba histolytica

Afzal Husain; Dan Sato; Ghulam Jeelani; Fumika Mi-ichi; Vahab Ali; Makoto Suematsu; Tomoyoshi Soga; Tomoyoshi Nozaki

l-Cysteine is ubiquitous in all living organisms and is involved in a variety of functions, including the synthesis of iron-sulfur clusters and glutathione and the regulation of the structure, stability, and catalysis of proteins. In the protozoan parasite Entamoeba histolytica, the causative agent of amebiasis, l-cysteine plays an essential role in proliferation, adherence, and defense against oxidative stress; however, the essentiality of this amino acid in the pathways it regulates is not well understood. In the present study, we applied capillary electrophoresis time-of-flight mass spectrometry to quantitate charged metabolites modulated in response to l-cysteine deprivation in E. histolytica, which was selected as a model for examining the biological roles of l-cysteine. l-Cysteine deprivation had profound effects on glycolysis, amino acid, and phospholipid metabolism, with sharp decreases in the levels of l-cysteine, l-cystine, and S-adenosylmethionine and a dramatic accumulation of O-acetylserine and S-methylcysteine. We further demonstrated that S-methylcysteine is synthesized from methanethiol and O-acetylserine by cysteine synthase, which was previously considered to be involved in sulfur-assimilatory l-cysteine biosynthesis. In addition, l-cysteine depletion repressed glycolysis and energy generation, as it reduced acetyl-CoA, ethanol, and the major nucleotide di- and triphosphates, and led to the accumulation of glycolytic intermediates. Interestingly, l-cysteine depletion increased the synthesis of isopropanolamine and phosphatidylisopropanolamine, and it was confirmed that their increment was not a result of oxidative stress but was a specific response to l-cysteine depletion. We also identified a pathway in which isopropanolamine is synthesized from methylglyoxal via aminoacetone. To date, this study represents the first case where l-cysteine deprivation leads to drastic changes in core metabolic pathways, including energy, amino acid, and phospholipid metabolism.


PLOS ONE | 2012

Metabolic profiling of the protozoan parasite Entamoeba invadens revealed activation of unpredicted pathway during encystation

Ghulam Jeelani; Dan Sato; Afzal Husain; Aleyla Escueta-de Cadiz; Masahiro Sugimoto; Tomoyoshi Soga; Makoto Suematsu; Tomoyoshi Nozaki

Encystation, which is cellular differentiation from the motile, proliferative, labile trophozoite form to the dormant, resistant cyst form, is a crucial process found in parasitic and free-living protozoa such as Entamoeba, Giardia, Acanthamoeba, and Balamuthia. Since encystation is an essential process to deal with the adverse external environmental changes during the life cycle, and often integral to the transmission of the diseases, biochemical understanding of the process potentially provides useful measures against the infections caused by this group of protozoa. In this study, we investigated metabolic and transcriptomic changes that occur during encystation in Entamoeba invadens, the reptilian sibling of mammal-infecting E. histolytica, using capillary electrophoresis-tandem mass spectrometry-based metabolite profiling and DNA microarray-based expression profiling. As the encystation progressed, the levels of majority of metabolites involved in glycolysis and nucleotides drastically decreased, indicating energy generation is ceased. Furthermore, the flux of glycolysis was redirected toward chitin wall biosynthesis. We found remarkable temporal increases in biogenic amines such as isoamylamine, isobutylamine, and cadaverine, during the early period of encystation, when the trophozoites form large multicellular aggregates (precyst). We also found remarkable induction of γ-aminobutyric acid (GABA) during encystation. This study has unveiled for the first time the dynamics of the transcriptional and metabolic regulatory networks during encystation, and should help in better understanding of the process in pathogenic eukaryotes, and further development of measures controlling infections they cause.


International Journal of Antimicrobial Agents | 2010

Cytotoxic effect of amide derivatives of trifluoromethionine against the enteric protozoan parasite Entamoeba histolytica

Dan Sato; Seiki Kobayashi; Hiroyuki Yasui; Norio Shibata; Takeshi Toru; Masaichi Yamamoto; Gensuke Tokoro; Vahab Ali; Tomoyoshi Soga; Tsutomu Takeuchi; Makoto Suematsu; Tomoyoshi Nozaki

Amoebiasis, caused by infection with the enteric protist Entamoeba histolytica, is one of the major parasitic diseases. Although metronidazole and its derivatives are currently employed in therapy, the paucity of effective drugs and potential clinical resistance necessitate the development of a novel drug. Trifluoromethionine (TFM) is a promising lead compound for antiamoebic drugs. To potentiate the antiamoebic effect of TFM, we synthesised various amide derivatives of TFM and evaluated their cytotoxicity. The amide derivatives of TFM were observed to have a superior cytotoxic effect compared with TFM and metronidazole against E. histolytica in vitro. Although TFM showed cytotoxicity following degradation by methionine gamma-lyase, the derivatives were degraded by the enzyme less efficiently compared with TFM. We further demonstrated that a representative derivative was hydrolysed by the amoebic cell lysate to first yield TFM, followed by degradation similar to TFM. Hydrolysis was partially inhibited by protease inhibitors. A single subcutaneous or oral administration of TFM and its amide derivatives also effectively prevented the formation of amoebic liver abscess in a rodent model. These data demonstrate the improved effectiveness of TFM derivatives against E. histolytica infection and elucidate the mechanisms underlining the mode of action of these compounds.


Superconductor Science and Technology | 2012

Clarification as to why alcoholic beverages have the ability to induce superconductivity in Fe1+dTe1?xSx

Keita Deguchi; Dan Sato; Masahiro Sugimoto; Hiroshi Hara; Yasuna Kawasaki; Satoshi Demura; Tohru Watanabe; Saleem J. Denholme; Hiroyuki Okazaki; Toshinori Ozaki; Takahide Yamaguchi; Hiroyuki Takeya; Tomoyoshi Soga; Masaru Tomita; Yoshihiko Takano

To elucidate the mechanism as to why alcoholic beverages can induce superconductivity in Fe1+dTe1?xSx samples, we performed component analysis and found that a weak acid such as an organic acid has the ability to induce superconductivity. Inductively coupled plasma spectroscopy was performed on weak acid solutions post-annealing. We found that the mechanism of inducement of superconductivity in Fe1+dTe1?xSx is the deintercalation of excess Fe from the interlayer sites.


International Journal of Molecular Sciences | 2015

Structural Insights into the Molecular Design of Flutolanil Derivatives Targeted for Fumarate Respiration of Parasite Mitochondria

Daniel Ken Inaoka; Tomoo Shiba; Dan Sato; Emmanuel Oluwadare Balogun; Tsuyoshi Sasaki; Madoka Nagahama; Masatsugu Oda; Shigeru Matsuoka; Junko Ohmori; Teruki Honma; Masayuki Inoue; Kiyoshi Kita; Shigeharu Harada

Recent studies on the respiratory chain of Ascaris suum showed that the mitochondrial NADH-fumarate reductase system composed of complex I, rhodoquinone and complex II plays an important role in the anaerobic energy metabolism of adult A. suum. The system is the major pathway of energy metabolism for adaptation to a hypoxic environment not only in parasitic organisms, but also in some types of human cancer cells. Thus, enzymes of the pathway are potential targets for chemotherapy. We found that flutolanil is an excellent inhibitor for A. suum complex II (IC50 = 0.058 μM) but less effectively inhibits homologous porcine complex II (IC50 = 45.9 μM). In order to account for the specificity of flutolanil to A. suum complex II from the standpoint of structural biology, we determined the crystal structures of A. suum and porcine complex IIs binding flutolanil and its derivative compounds. The structures clearly demonstrated key interactions responsible for its high specificity to A. suum complex II and enabled us to find analogue compounds, which surpass flutolanil in both potency and specificity to A. suum complex II. Structures of complex IIs binding these compounds will be helpful to accelerate structure-based drug design targeted for complex IIs.

Collaboration


Dive into the Dan Sato's collaboration.

Top Co-Authors

Avatar

Tomoyoshi Nozaki

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ghulam Jeelani

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Afzal Husain

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vahab Ali

Rajendra Memorial Research Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Shigeharu Harada

Kyoto Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tomoo Shiba

Kyoto Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge