Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tomoo Shiba is active.

Publication


Featured researches published by Tomoo Shiba.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Structural basis for Rab11-dependent membrane recruitment of a family of Rab11-interacting protein 3 (FIP3)/Arfophilin-1.

Tomoo Shiba; Hiroshi Koga; Hye-Won Shin; Masato Kawasaki; Ryuichi Kato; Kazuhisa Nakayama; Soichi Wakatsuki

Family of Rab11-interacting protein (FIP)3/Arfophlin-1 and FIP4/Arfophilin-2 are dual effectors for Rab11 and ADP ribosylation factor (ARF)5/ARF6, which are involved in membrane delivery from recycling endosomes to the plasma membrane during cytokinesis. Here, we define the distinct C-terminal binding regions of FIP3 and FIP4 for Rab11 and ARF5/ARF6. Furthermore, we determined the crystal structure of Rab11 in complex with the Rab11-binding domain (RBD) of FIP3. The long amphiphilic α-helix of FIP3-RBD forms a parallel coiled-coil homodimer, with two symmetric interfaces with two Rab11 molecules. The hydrophobic side of the RBD helix is involved in homodimerization and mediates the interaction with the Rab11 switch 1 region, whereas the opposite hydrophilic side interacts with the Rab11 switch 2 and is the major factor contributing to the binding specificity. The bivalent interaction of FIP3 with Rab11 at the C terminus allows FIP3 to coordinately function with other binding partners, including ARFs.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Structure of the trypanosome cyanide-insensitive alternative oxidase

Tomoo Shiba; Yasutoshi Kido; Kimitoshi Sakamoto; Daniel Ken Inaoka; Chiaki Tsuge; Ryoko Tatsumi; Gen Takahashi; Emmanuel O. Balogun; Takeshi Nara; Takashi Aoki; Teruki Honma; Akiko Tanaka; Masayuki Inoue; Shigeru Matsuoka; Hiroyuki Saimoto; Anthony L. Moore; Shigeharu Harada; Kiyoshi Kita

In addition to haem copper oxidases, all higher plants, some algae, yeasts, molds, metazoans, and pathogenic microorganisms such as Trypanosoma brucei contain an additional terminal oxidase, the cyanide-insensitive alternative oxidase (AOX). AOX is a diiron carboxylate protein that catalyzes the four-electron reduction of dioxygen to water by ubiquinol. In T. brucei, a parasite that causes human African sleeping sickness, AOX plays a critical role in the survival of the parasite in its bloodstream form. Because AOX is absent from mammals, this protein represents a unique and promising therapeutic target. Despite its bioenergetic and medical importance, however, structural features of any AOX are yet to be elucidated. Here we report crystal structures of the trypanosomal alternative oxidase in the absence and presence of ascofuranone derivatives. All structures reveal that the oxidase is a homodimer with the nonhaem diiron carboxylate active site buried within a four-helix bundle. Unusually, the active site is ligated solely by four glutamate residues in its oxidized inhibitor-free state; however, inhibitor binding induces the ligation of a histidine residue. A highly conserved Tyr220 is within 4 Å of the active site and is critical for catalytic activity. All structures also reveal that there are two hydrophobic cavities per monomer. Both inhibitors bind to one cavity within 4 Å and 5 Å of the active site and Tyr220, respectively. A second cavity interacts with the inhibitor-binding cavity at the diiron center. We suggest that both cavities bind ubiquinol and along with Tyr220 are required for the catalytic cycle for O2 reduction.


Annual Review of Plant Biology | 2013

Unraveling the Heater: New Insights into the Structure of the Alternative Oxidase

Anthony L. Moore; Tomoo Shiba; Luke Young; Shigeharu Harada; Kiyoshi Kita; Kikukatsu Ito

The alternative oxidase is a membrane-bound ubiquinol oxidase found in the majority of plants as well as many fungi and protists, including pathogenic organisms such as Trypanosoma brucei. It catalyzes a cyanide- and antimycin-A-resistant oxidation of ubiquinol and the reduction of oxygen to water, short-circuiting the mitochondrial electron-transport chain prior to proton translocation by complexes III and IV, thereby dramatically reducing ATP formation. In plants, it plays a key role in cellular metabolism, thermogenesis, and energy homeostasis and is generally considered to be a major stress-induced protein. We describe recent advances in our understanding of this proteins structure following the recent successful crystallization of the alternative oxidase from T. brucei. We focus on the nature of the active site and ubiquinol-binding channels and propose a mechanism for the reduction of oxygen to water based on these structural insights. We also consider the regulation of activity at the posttranslational and retrograde levels and highlight challenges for future research.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Structures of cyanobacteriochromes from phototaxis regulators AnPixJ and TePixJ reveal general and specific photoconversion mechanism

Rei Narikawa; Takami Ishizuka; Norifumi Muraki; Tomoo Shiba; Genji Kurisu; Masahiko Ikeuchi

Cyanobacteriochromes are cyanobacterial tetrapyrrole-binding photoreceptors that share a bilin-binding GAF domain with photoreceptors of the phytochrome family. Cyanobacteriochromes are divided into many subclasses with distinct spectral properties. Among them, putative phototaxis regulators PixJs of Anabaena sp. PCC 7120 and Thermosynechococcus elongatus BP-1 (denoted as AnPixJ and TePixJ, respectively) are representative of subclasses showing red-green-type and blue/green-type reversible photoconversion, respectively. Here, we determined crystal structures for the AnPixJ GAF domain in its red-absorbing 15Z state (Pr) and the TePixJ GAF domain in its green-absorbing 15E state (Pg). The overall structure of these proteins is similar to each other and also similar to known phytochromes. Critical differences found are as follows: (i) the chromophore of AnPixJ Pr is phycocyanobilin in a C5-Z,syn/C10-Z,syn/C15-Z,anti configuration and that of TePixJ Pg is phycoviolobilin in a C10-Z,syn/C15-E,anti configuration, (ii) a side chain of the key aspartic acid is hydrogen bonded to the tetrapyrrole rings A, B and C in AnPixJ Pr and to the pyrrole ring D in TePixJ Pg, (iii) additional protein-chromophore interactions are provided by subclass-specific residues including tryptophan in AnPixJ and cysteine in TePixJ. Possible structural changes following the photoisomerization of the chromophore between C15-Z and C15-E are discussed based on the X-ray structures at 1.8 and 2.0-Å resolution, respectively, in two distinct configurations.


Journal of Biochemistry | 2012

Crystal structure of mitochondrial quinol-fumarate reductase from the parasitic nematode Ascaris suum

Hironari Shimizu; Arihiro Osanai; Kimitoshi Sakamoto; Daniel Ken Inaoka; Tomoo Shiba; Shigeharu Harada; Kiyoshi Kita

In the anaerobic respiratory chain of the parasitic nematode Ascaris suum, complex II couples the reduction of fumarate to the oxidation of rhodoquinol, a reverse reaction catalyzed by mammalian complex II. In this study, the first structure of anaerobic complex II of mitochondria was determined. The structure, composed of four subunits and five co-factors, is similar to that of aerobic complex II, except for an extra peptide found in the smallest anchor subunit of the A. suum enzyme. We discuss herein the structure-function relationship of the enzyme and the critical role of the low redox potential of rhodoquinol in the fumarate reduction of A. suum complex II.


Nucleic Acids Research | 2009

Functional importance of Crenarchaea-specific extra-loop revealed by an X-ray structure of a heterotetrameric crenarchaeal splicing endonuclease

Shigeo Yoshinari; Tomoo Shiba; Daniel-Ken Inaoka; Takashi Itoh; Genji Kurisu; Shigeharu Harada; Kiyoshi Kita; Yoh-ichi Watanabe

Archaeal splicing endonucleases (EndAs) are currently classified into three groups. Two groups require a single subunit protein to form a homodimer or homotetramer. The third group requires two nonidentical protein components for the activity. To elucidate the molecular architecture of the two-subunit EndA system, we studied a crenarchaeal splicing endonuclease from Pyrobaculum aerophilum. In the present study, we solved a crystal structure of the enzyme at 1.7-Å resolution. The enzyme adopts a heterotetrameric form composed of two catalytic and two structural subunits. By connecting the structural and the catalytic subunits of the heterotetrameric EndA, we could convert the enzyme to a homodimer that maintains the broad substrate specificity that is one of the characteristics of heterotetrameric EndA. Meanwhile, a deletion of six amino acids in a Crenarchaea-specific loop abolished the endonuclease activity even on a substrate with canonical BHB motif. These results indicate that the subunit architecture is not a major factor responsible for the difference of substrate specificity between single- and two-subunit EndA systems. Rather, the structural basis for the broad substrate specificity is built into the crenarchaeal splicing endonuclease itself.


Biochemical Society Transactions | 2013

The alternative oxidases: simple oxidoreductase proteins with complex functions

Luke Young; Tomoo Shiba; Shigeharu Harada; Kiyoshi Kita; Mary S. Albury; Anthony L. Moore

The alternative oxidases are membrane-bound monotopic terminal electron transport proteins found in all plants and in some agrochemically important fungi and parasites including Trypansoma brucei, which is the causative agent of trypanosomiasis. They are integral membrane proteins and reduce oxygen to water in a four electron process. The recent elucidation of the crystal structure of the trypanosomal alternative oxidase at 2.85 Å (1 Å=0.1 nm) has revealed salient structural features necessary for its function. In the present review we compare the primary and secondary ligation spheres of the alternative oxidases with other di-iron carboxylate proteins and propose a mechanism for the reduction of oxygen to water.


Bioscience, Biotechnology, and Biochemistry | 2012

The Role of Amino Acid Residues in the Active Site of L-Methionine γ-lyase from Pseudomonas putida

Mitsuki Fukumoto; Daizou Kudou; Shouko Murano; Tomoo Shiba; Dan Sato; Takashi Tamura; Shigeharu Harada; Kenji Inagaki

Cys116, Lys240*, and Asp241* (asterisks indicate residues from the second subunit of the active dimer) at the active site of L-methionine γ-lyase of Pseudomonas putida (MGL_Pp) are highly conserved among heterologous MGLs. In a previous study, we found that substitution of Cys116 for His led to a drastic increase in activity toward L-cysteine and a decrease in that toward L-methionine. In this study, we examined some properties of the C116H mutant by kinetic analysis and 3D structural analysis. We assumed that substitution of Cys116 for His broke the original hydrogen-bond network and that this induced a significant effect of Tyr114 as a general acid catalyst, possibly due to the narrow space in the active site. The C116H mutant acquired a novel β-elimination activity and lead a drastic conformation change in the histidine residue at position 116 by binding the substrate, suggesting that this His residue affects the reaction specificity of C116H. Furthermore, we suggest that Lys240* is important for substrate recognition and structural stability and that Asp241* is also involved in substrate specificity in the elimination reaction. Based on this, we suggest that the hydrogen-bond network among Cys116, Lys240*, and Asp241* contributes to substrate specificity that is, to L-methionine recognition at the active site in MGL_Pp.


Journal of Biochemistry | 2013

Biochemical characterization of highly active Trypanosoma brucei gambiense glycerol kinase, a promising drug target

Emmanuel Oluwadare Balogun; Daniel Ken Inaoka; Tomoo Shiba; Yasutoshi Kido; Takeshi Nara; Takashi Aoki; Teruki Honma; Akiko Tanaka; Masayuki Inoue; Shigeru Matsuoka; Paul A. M. Michels; Shigeharu Harada; Kiyoshi Kita

Human African trypanosomes are blood parasites that cause sleeping sickness, a debilitating disease in sub-Saharan Africa. Glycerol kinase (GK) of these parasites additionally possesses a novel property of reverse catalysis. GK is essential to blood stream form trypanosome, and therefore a promising drug target. Here, utilizing recombinant DNA technology an optimized procedure for obtaining large amount of the purified protein was established. Furthermore, biochemical data on its enzymology are reported. The protein was maximally active at pH 6.8 over a temperature range of 25-70°C, with activation energy of 34.02 ± 0.31 kJ mol(-1). The enzyme catalyses a reversible bisubstrate [ADP and glycerol 3-phosphate (G3P)]-biproduct (ATP and glycerol) reaction. It has Km of 0.90 and 5.54 mM for ADP and G3P, respectively, and Vmax of 25.3 and 20.0 µmol min(-1) mg(-1), respectively. Unexpectedly, the enzyme lost more than 50% of its activity in 48 h at 4°C in 0.1 M sodium phosphate buffer pH 6.8 containing 10 mM MgSO4. However, perfect stabilization of the GK for more than 4 weeks was achieved in the presence of its natural ligands and cofactor. Using this stabilized protein, crystals of trypanosome GK with better resolution were obtained. This will accelerate the success of GK inhibitor development for drug design.


Acta Crystallographica Section D-biological Crystallography | 2005

Structure determination of GGA-GAE and γ1-ear in complex with peptides : crystallization of low-affinity complexes in membrane traffic

Yusuke Yamada; Michio Inoue; Tomoo Shiba; Masato Kawasaki; Ryuichi Kato; Kazuhisa Nakayama; Soichi Wakatsuki

Crystallization of protein-protein complexes is an important step in the studies of biological functions of proteins. However, weak and transient, even though specific, interactions often present difficulties in crystallization of protein complexes due to the heterogeneity of the sample mixture. For example, the gamma1-ear domain of the AP-1 complex and the GAE domain of GGA1, responsible for the interaction with accessory proteins involved in vesicular transport, are known to interact with target proteins with affinities of the order of 1-100 microM. Such low affinities have hampered crystallization trials of the complexes. To overcome this problem, the gamma1-ear and GAE domains were first co-crystallized with excess amounts of the peptides. Co-crystals of both domains were obtained and the complex structures were determined at 2.5-2.9 A resolution. Based on the crystal packing of gamma1-ear and the cognate peptide, gamma1-ear fused with a peptide tag at the N-terminus was prepared. The peptide-tagged gamma1-ear readily crystallized and the crystal diffracted far better, 1.9-2.2 A resolution, compared with the co-crystallized complex, giving significantly more details without affecting the overall complex structure.

Collaboration


Dive into the Tomoo Shiba's collaboration.

Top Co-Authors

Avatar

Shigeharu Harada

Kyoto Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Kiyoshi Kita

Kyoto Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge