Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dan Siegal-Gaskins is active.

Publication


Featured researches published by Dan Siegal-Gaskins.


Proceedings of the National Academy of Sciences of the United States of America | 2007

A photosensory two-component system regulates bacterial cell attachment

Dan Siegal-Gaskins; David Rawling; Aretha Fiebig; Sean Crosson

Flavin-binding LOV domains are blue-light photosensory modules that are conserved in a number of developmental and circadian regulatory proteins in plants, algae, and fungi. LOV domains are also present in bacterial genomes, and are commonly located at the amino termini of sensor histidine kinases. Genes predicted to encode LOV-histidine kinases are conserved across a broad range of bacterial taxa, from aquatic oligotrophs to plant and mammalian pathogens. However, the function of these putative prokaryotic photoreceptors remains largely undefined. The differentiating bacterium, Caulobacter crescentus, contains an operon encoding a two-component signaling system consisting of a LOV-histidine kinase, LovK, and a single-domain response regulator, LovR. LovK binds a flavin cofactor, undergoes a reversible photocycle, and displays increased ATPase and autophosphorylation activity in response to visible light. Deletion of the response regulator gene, lovR, results in severe attenuation of cell attachment to a glass surface under laminar flow, whereas coordinate, low-level overexpression of lovK and lovR results in a light-independent increase in cell–cell attachment, a response that requires both the conserved histidine phosphorylation site in LovK and aspartate phosphorylation site in LovR. Growing C. crescentus in the presence of blue light dramatically enhances cell–cell attachment in the lovK–lovR overexpression background. A conserved cysteine residue in the LOV domain of LovK, which forms a covalent adduct with the flavin cofactor upon absorption of visible light, is necessary for the light-dependent regulation of LovK enzyme activity and is required for the light-dependent enhancement of intercellular attachment.


Molecular Microbiology | 2010

Interaction specificity, toxicity and regulation of a paralogous set of ParE/RelE-family toxin-antitoxin systems.

Aretha Fiebig; Cyd Marie Castro Rojas; Dan Siegal-Gaskins; Sean Crosson

Toxin–antitoxin (TA) gene cassettes are widely distributed across bacteria, archaea and bacteriophage. The chromosome of the α‐proteobacterium, Caulobacter crescentus, encodes eight ParE/RelE‐superfamily toxins that are organized into operons with their cognate antitoxins. A systematic genetic analysis of these parDE and relBE TA operons demonstrates that seven encode functional toxins. The one exception highlights an example of a non‐functional toxin pseudogene. Chromosomally encoded ParD and RelB proteins function as antitoxins, inhibiting their adjacently encoded ParE and RelE toxins. However, these antitoxins do not functionally complement each other, even when overexpressed. Transcription of these paralogous TA systems is differentially regulated under distinct environmental conditions. These data support a model in which multiple TA paralogs encoded by a single bacterial chromosome form independent functional units with insulated protein–protein interactions. Further characterization of the parDE1 system at the single‐cell level reveals that ParE1 toxin functions to inhibit cell division but not cell growth; residues at the C‐terminus of ParE1 are critical for its stability and toxicity. While continuous ParE1 overexpression results in a substantial loss in cell viability at the population level, a fraction of cells escape toxicity, providing evidence that ParE1 toxicity is not uniform within clonal cell populations.


Biophysical Journal | 2008

Tightly Regulated and Heritable Division Control in Single Bacterial Cells

Dan Siegal-Gaskins; Sean Crosson

The robust surface adherence property of the aquatic bacterium Caulobacter crescentus permits visualization of single cells in a linear microfluidic culture chamber over an extended number of generations. The division rate of Caulobacter in this continuous-flow culture environment is substantially faster than in other culture apparati and is independent of flow velocity. Analysis of the growth and division of single isogenic cells reveals that the cell cycle control network of this bacterium generates an oscillatory output with a coefficient of variation lower than that of all other bacterial species measured to date. DivJ, a regulator of polar cell development, is necessary for maintaining low variance in interdivision timing, as transposon disruption of divJ significantly increases the coefficient of variation of both interdivision time and the rate of cell elongation. Moreover, interdivision time and cell division arrest are significantly correlated between mother and daughter cells, providing evidence for epigenetic inheritance of cell division behavior in Caulobacter. The single-cell growth/division results reported here suggest that future predictive models of Caulobacter cell cycle regulation should include parameters describing the variance and inheritance properties of this system.


PLOS Computational Biology | 2011

Emergence of Switch-Like Behavior in a Large Family of Simple Biochemical Networks

Dan Siegal-Gaskins; Maria Katherine Mejia-Guerra; Gregory D. Smith; Erich Grotewold

Bistability plays a central role in the gene regulatory networks (GRNs) controlling many essential biological functions, including cellular differentiation and cell cycle control. However, establishing the network topologies that can exhibit bistability remains a challenge, in part due to the exceedingly large variety of GRNs that exist for even a small number of components. We begin to address this problem by employing chemical reaction network theory in a comprehensive in silico survey to determine the capacity for bistability of more than 40,000 simple networks that can be formed by two transcription factor-coding genes and their associated proteins (assuming only the most elementary biochemical processes). We find that there exist reaction rate constants leading to bistability in ∼90% of these GRN models, including several circuits that do not contain any of the TF cooperativity commonly associated with bistable systems, and the majority of which could only be identified as bistable through an original subnetwork-based analysis. A topological sorting of the two-gene family of networks based on the presence or absence of biochemical reactions reveals eleven minimal bistable networks (i.e., bistable networks that do not contain within them a smaller bistable subnetwork). The large number of previously unknown bistable network topologies suggests that the capacity for switch-like behavior in GRNs arises with relative ease and is not easily lost through network evolution. To highlight the relevance of the systematic application of CRNT to bistable network identification in real biological systems, we integrated publicly available protein-protein interaction, protein-DNA interaction, and gene expression data from Saccharomyces cerevisiae, and identified several GRNs predicted to behave in a bistable fashion.


BMC Systems Biology | 2009

The capacity for multistability in small gene regulatory networks.

Dan Siegal-Gaskins; Erich Grotewold; Gregory D. Smith

BackgroundRecent years have seen a dramatic increase in the use of mathematical modeling to gain insight into gene regulatory network behavior across many different organisms. In particular, there has been considerable interest in using mathematical tools to understand how multistable regulatory networks may contribute to developmental processes such as cell fate determination. Indeed, such a network may subserve the formation of unicellular leaf hairs (trichomes) in the model plant Arabidopsis thaliana.ResultsIn order to investigate the capacity of small gene regulatory networks to generate multiple equilibria, we present a chemical reaction network (CRN)-based modeling formalism and describe a number of methods for CRN analysis in a parameter-free context. These methods are compared and applied to a full set of one-component subnetworks, as well as a large random sample from 40,680 similarly constructed two-component subnetworks. We find that positive feedback and cooperativity mediated by transcription factor (TF) dimerization is a requirement for one-component subnetwork bistability. For subnetworks with two components, the presence of these processes increases the probability that a randomly sampled subnetwork will exhibit multiple equilibria, although we find several examples of bistable two-component subnetworks that do not involve cooperative TF-promoter binding. In the specific case of epidermal differentiation in Arabidopsis, dimerization of the GL3-GL1 complex and cooperative sequential binding of GL3-GL1 to the CPC promoter are each independently sufficient for bistability.ConclusionComputational methods utilizing CRN-specific theorems to rule out bistability in small gene regulatory networks are far superior to techniques generally applicable to deterministic ODE systems. Using these methods to conduct an unbiased survey of parameter-free deterministic models of small networks, and the Arabidopsis epidermal cell differentiation subnetwork in particular, we illustrate how future experimental research may be guided by network structure analysis.


Nucleic Acids Research | 2008

Minimally invasive determination of mRNA concentration in single living bacteria

Călin C. Guet; Luke Bruneaux; Taejin L. Min; Dan Siegal-Gaskins; Israel Figueroa; Thierry Emonet; Philippe Cluzel

Fluorescence correlation spectroscopy (FCS) has permitted the characterization of high concentrations of noncoding RNAs in a single living bacterium. Here, we extend the use of FCS to low concentrations of coding RNAs in single living cells. We genetically fuse a red fluorescent protein (RFP) gene and two binding sites for an RNA-binding protein, whose translated product is the RFP protein alone. Using this construct, we determine in single cells both the absolute [mRNA] concentration and the associated [RFP] expressed from an inducible plasmid. We find that the FCS method allows us to reliably monitor in real-time [mRNA] down to ∼40 nM (i.e. approximately two transcripts per volume of detection). To validate these measurements, we show that [mRNA] is proportional to the associated expression of the RFP protein. This FCS-based technique establishes a framework for minimally invasive measurements of mRNA concentration in individual living bacteria.


PLOS Computational Biology | 2009

Model-Based Deconvolution of Cell Cycle Time-Series Data Reveals Gene Expression Details at High Resolution

Dan Siegal-Gaskins; Joshua N. Ash; Sean Crosson

In both prokaryotic and eukaryotic cells, gene expression is regulated across the cell cycle to ensure “just-in-time” assembly of select cellular structures and molecular machines. However, present in all time-series gene expression measurements is variability that arises from both systematic error in the cell synchrony process and variance in the timing of cell division at the level of the single cell. Thus, gene or protein expression data collected from a population of synchronized cells is an inaccurate measure of what occurs in the average single-cell across a cell cycle. Here, we present a general computational method to extract “single-cell”-like information from population-level time-series expression data. This method removes the effects of 1) variance in growth rate and 2) variance in the physiological and developmental state of the cell. Moreover, this method represents an advance in the deconvolution of molecular expression data in its flexibility, minimal assumptions, and the use of a cross-validation analysis to determine the appropriate level of regularization. Applying our deconvolution algorithm to cell cycle gene expression data from the dimorphic bacterium Caulobacter crescentus, we recovered critical features of cell cycle regulation in essential genes, including ctrA and ftsZ, that were obscured in population-based measurements. In doing so, we highlight the problem with using population data alone to decipher cellular regulatory mechanisms and demonstrate how our deconvolution algorithm can be applied to produce a more realistic picture of temporal regulation in a cell.


Journal of the Royal Society Interface | 2015

An analytical approach to bistable biological circuit discrimination using real algebraic geometry

Dan Siegal-Gaskins; Elisa Franco; Tiffany Zhou; Richard M. Murray

Biomolecular circuits with two distinct and stable steady states have been identified as essential components in a wide range of biological networks, with a variety of mechanisms and topologies giving rise to their important bistable property. Understanding the differences between circuit implementations is an important question, particularly for the synthetic biologist faced with determining which bistable circuit design out of many is best for their specific application. In this work we explore the applicability of Sturms theorem—a tool from nineteenth-century real algebraic geometry—to comparing ‘functionally equivalent’ bistable circuits without the need for numerical simulation. We first consider two genetic toggle variants and two different positive feedback circuits, and show how specific topological properties present in each type of circuit can serve to increase the size of the regions of parameter space in which they function as switches. We then demonstrate that a single competitive monomeric activator added to a purely monomeric (and otherwise monostable) mutual repressor circuit is sufficient for bistability. Finally, we compare our approach with the Routh–Hurwitz method and derive consistent, yet more powerful, parametric conditions. The predictive power and ease of use of Sturms theorem demonstrated in this work suggest that algebraic geometric techniques may be underused in biomolecular circuit analysis.


Plant Journal | 2013

High-resolution computational imaging of leaf hair patterning using polarized light microscopy

Marcelo Pomeranz; Jeffrey A. Campbell; Dan Siegal-Gaskins; Jacob Engelmeier; Tyler Wilson; Virginia Fernández; Jelena Brkljacic; Erich Grotewold

The leaf hairs (trichomes) on the aerial surface of many plant species play important roles in phytochemical production and herbivore protection, and have significant applications in the chemical and agricultural industries. Trichome formation in the model plant Arabidopsis thaliana also presents a tractable experimental system to study cell differentiation and pattern formation in plants and animals. Studies of this developmental process suggest that trichome positioning may be the result of a self-forming pattern, emerging from a lateral inhibition mechanism determined by a network of regulatory factors. Critical to the continued success of these studies is the ability to quantitatively characterize trichome pattern phenotypes in response to mutations in the genes that regulate this process. Advanced protocols for the observation of changes in trichome patterns can be expensive and/or time consuming, and lack user-friendly analysis tools. In order to address some of these challenges, we describe here a strategy based on polarized light microscopy for the quick and accurate measurement of trichome positions, and provide an online tool designed for the quantitative analyses of trichome number, density and patterning.


bioRxiv | 2013

Resource usage and gene circuit performance characterization in a cell-free breadboard

Dan Siegal-Gaskins; Zoltan A. Tuza; Jongmin Kim; Vincent Noireaux; Richard M. Murray

The many successes of synthetic biology have come in a manner largely different from those in other engineering disciplines; in particular, without well-characterized and simplified prototyping environments to play a role analogous to wind-tunnels in aerodynamics and breadboards in electrical engineering. However, as the complexity of synthetic circuits increases, the benefits—in cost savings and design cycle time—of a more traditional engineering approach can be significant. We have recently developed an in vitro ‘breadboard’ prototyping platform based on E. coli cell extract that allows biocircuits to operate in an environment considerably simpler than but functionally similar to in vivo. The simplicity of the cell-free transcription-translation breadboard makes it a promising tool for rapid biocircuit design and testing, as well as for probing the fundamentals of gene circuit functions that are normally masked by cellular complexity. In this work we characterize the cell-free breadboard using real-time and simultaneous measurements of transcriptional and translational activities of a small set of reporter genes and a transcriptional activation cascade. We determine the effects of promoter strength, gene and nucleoside triphosphate concentrations on biocircuits properties, and we isolate contributions of the essential components—core RNA polymerase, housekeeping sigma factor, and ribosomes—to overall performance. Importantly, we show how limits on essential resources, particularly those involved in translation steps, manifest themselves in the form of reduced expression in the presence of orthogonal genes as load processes.

Collaboration


Dive into the Dan Siegal-Gaskins's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard M. Murray

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zoltan A. Tuza

The Catholic University of America

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge