Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dan Stratton is active.

Publication


Featured researches published by Dan Stratton.


Journal of Immunological Methods | 2011

A filtration-based protocol to isolate human Plasma Membrane-derived Vesicles and exosomes from blood plasma

Ryan Grant; Ephraim Ansa-Addo; Dan Stratton; Samuel Antwi-Baffour; Samireh Jorfi; Sharad Kholia; Lizelle Krige; Sigrun Lange; Jameel M. Inal

The methods of Plasma Membrane-derived Vesicle (PMV) isolation and quantification vary considerably in the literature and a new standard needs to be defined. This study describes a novel filtration method to isolate PMVs in plasma, which avoids high speed centrifugation, and to quantify them using a Becton Dickinson (BD) FACS Calibur™ flow cytometer, as annexin V-positive vesicles, larger than 0.2 μm in diameter. Essentially microvesicles (which comprise a mixture of PMVs and exosomes) from citrate plasma were sonicated to break up clumped exosomes, and filtered using Millipore 0.1 μm pore size Hydrophilic Durapore membranes in Swinnex 13 mm filter holders. Phosphatidylserine-positive PMVs detected with annexin V-PE were quantified using combined labelling and gating strategies in conjunction with Polysciences Polybead Microspheres (0.2 μm) and BDTrucount tubes. The PMV absolute count was calculated on the analysis template using the Trucount tube lot number information and expressed in PMV count/ml. Having estimated a normal reference range (0.51×10(5)-2.82×10(5) PMVs/ml) from a small sample of human donors, using the developed method, the effect of certain variables was investigated. Variations such as freezing of samples and gender status did not significantly alter the PMV absolute count, and with age plasma PMV levels were only marginally reduced. Smokers appeared to have reduced PMV levels. Nicotine, as for calpeptin was shown to dose-dependently (from 10 up to 50 μM) reduce levels of early apoptosis in THP-1 monocytes and to decrease the level of PMV release. Fasting individuals had 2-3 fold higher PMV absolute counts compared to non-fasting subjects.


Biochimica et Biophysica Acta | 2013

Blood/plasma secretome and microvesicles.

Jameel M. Inal; Uchini S. Kosgodage; Sarah Azam; Dan Stratton; Samuel Antwi-Baffour; Sigrun Lange

A major but hitherto overseen component of the blood/plasma secretome is that of extracellular vesicles (EVs) which are shed from all blood cell types. These EVs are made up of microvesicles (MVs) and exosomes. MVs, 100nm-1μm in diameter, are released from the cell surface, and are a rich source of non-conventionally secreted proteins lacking a conventional signal peptide, and thus not secreted by the classical secretory pathways. Exosomes are smaller vesicles (≤100nm) having an endocytic origin and released upon multivesicular body fusion with the plasma membrane. Both vesicle types play major roles in intercellular cross talk and constitute an important component of the secretome especially in the area of biomarkers for cancer. The release of EVs, which are found in all the bodily fluids, is enhanced in cancer and a major focus of cancer proteomics is therefore targeted at EVs. The blood/plasma secretome is also a source of EVs, potentially diagnostic of infectious disease, whether from EVs released from infected cells or from the pathogens themselves. Despite the great excitement in this field, as is stated here and in other parts of this Special issue entitled: An Updated Secretome, much of the EV research, whether proteomic or functional in nature, urgently needs standardisation both in terms of nomenclature and isolation protocols. This article is part of a Special Issue entitled: An Updated Secretome.


Archivum Immunologiae Et Therapiae Experimentalis | 2012

Microvesicles in Health and Disease

Jameel M. Inal; Ephraim Ansa-Addo; Dan Stratton; Sharad Kholia; Samuel Antwi-Baffour; Samireh Jorfi; Sigrun Lange

Microvesicles (or MVs) are plasma membrane-derived vesicles released from most eukaryotic cells constitutively during early apoptosis or at higher levels after chemical or physical stress conditions. This review looks at some of the functions of MVs in terms of intercellular communication and ensuant signal transduction, including the transport of proteins (unconventional protein export) as well as of mRNA and microRNA. MVs also have roles in membrane repair, the removal of misfolded proteins, and in the control of apoptosis. We also discuss the role MVs have been shown to have in invasive growth and metastasis as well as in hypoxia in tumours and cerebral ischaemia. The association of MVs in infectious and autoimmune disease is also summarised together with their possible use as therapeutic agents.


Journal of Immunology | 2010

Human Plasma Membrane-Derived Vesicles Halt Proliferation and Induce Differentiation of THP-1 Acute Monocytic Leukemia Cells

Ephraim Ansa-Addo; Sigrun Lange; Dan Stratton; Samuel Antwi-Baffour; Igor Cestari; Marcel I. Ramirez; Maria V. McCrossan; Jameel M. Inal

Plasma membrane-derived vesicles (PMVs) are small intact vesicles released from the cell surface that play a role in intercellular communication. We have examined the role of PMVs in the terminal differentiation of monocytes. The myeloid-differentiating agents all-trans retinoic acid/PMA and histamine, the inflammatory mediator that inhibits promonocyte proliferation, induced an intracellular Ca2+-mediated PMV (as opposed to exosome) release from THP-1 promonocytes. These PMVs cause THP-1 cells to enter G0–G1 cell cycle arrest and induce terminal monocyte-to-macrophage differentiation. Use of the TGF-β receptor antagonist SB-431542 and anti–TGF-β1 Ab showed that this was due to TGF-β1 carried on PMVs. Although TGF-β1 levels have been shown to increase in cell culture supernatants during macrophage differentiation and dendritic cell maturation, the presence of TGF-β1 in PMVs is yet to be reported. In this study, to our knowledge we show for the first time that TGF-β1 is carried on the surface of PMVs, and we confirm the presence within PMVs of certain leaderless proteins, with reported roles in myeloid cell differentiation. Our in vitro findings support a model in which TGF-β1–bearing PMVs, released from promonocytic leukemia cells (THP-1) or primary peripheral blood monocytes on exposure to sublytic complement or after treatment with a differentiation therapy agent, such as all-trans retinoic acid, significantly reduce proliferation of THP-1 cells. Such PMVs also induce the terminal differentiation of primary peripheral blood monocytes as well as THP-1 monocytes.


Biochemical and Biophysical Research Communications | 2010

Human plasma membrane-derived vesicles inhibit the phagocytosis of apoptotic cells ― Possible role in SLE

Samuel Antwi-Baffour; Sharad Kholia; Yushau K.-D. Aryee; Ephraim Ansa-Addo; Dan Stratton; Sigrun Lange; Jameel M. Inal

Plasma membrane-derived vesicles (PMVs) also known as microparticles, are small membrane-bound vesicles released from the cell membrane via blebbing and shedding. PMVs have been linked with various physiological functions as well as pathological conditions such as inflammation, autoimmune disease and cardiovascular disease. PMVs are characterised by the expression of phosphatidylserine (PS) on the plasma membrane. PS, also expressed on apoptotic cells (ACs) enables macrophages to phagocytose ACs. As it is widely known that PMV production is increased during apoptosis, we were able to show that PMVs could compete dose dependently with ACs for the PS receptor on macrophages, so reducing phagocytosis of ACs. In a clinical setting this may result in secondary necrosis and further pathological conditions. In SLE in which there are raised PMV levels, there is an anti-phospholipid-mediated increase in PMV release, which can be abrogated by depletion of IgG. Our work provides an insight into how PMVs may play a role in the aetiology of autoimmune disease, in particular SLE.


Biochemical and Biophysical Research Communications | 2013

Pulsed extremely low-frequency magnetic fields stimulate microvesicle release from human monocytic leukaemia cells

Dan Stratton; Sigrun Lange; Jameel M. Inal

Microvesicles are released from cell surfaces constitutively during early apoptosis or upon activation with various stimuli including sublytic membrane attack complex (MAC). This study shows that an alternating current, pulsed, extremely low-frequency electromagnetic field (0.3 μT at 10 Hz, 6V AC) induced transient plasma membrane damage that allowed calcium influx. This in turn caused a release of stimulated microvesicles (sMV). When extracellular calcium was chelated with EGTA, sMV biogenesis initiated by ELFMF was markedly reduced and the reduction was less than when the stimulation was the deposition of sublytic MAC. This suggested that pulsed ELFMF resulted in transcellular membrane pores causing organelles to leak additional calcium into the cytoplasm (which EGTA would not chelate) which itself can lead to sMV release.


Scientific Reports | 2015

Inhibition of microvesiculation sensitizes prostate cancer cells to chemotherapy and reduces docetaxel dose required to limit tumor growth in vivo.

Samireh Jorfi; Ephraim Ansa-Addo; Sharadkumar Rajnikant Kholia; Dan Stratton; Shaunelle Valley; Sigrun Lange; Jameel M. Inal

Microvesicles shed from cells carry constituents of the cell cytoplasm, including, of importance in multidrug resistance to cancer chemotherapy, drugs that the tumor cell attempts to efflux. To see whether such drugs could be used at lower concentrations with the same efficacy, it was first shown that microvesiculation of prostate cancer (PCa) cells, PC3, could be inhibited pharmacologically with calpeptin (calpain inhibitor) and by siRNA (CAPNS1). In cells treated with docetaxel (DTX), this inhibition resulted in a third-fold increase in intracellular concentrations of DTX. As a result, 20-fold lower concentrations of DTX (5 nM) could be used, in the presence of calpeptin (20 μM) inducing the same degree of apoptosis after 48 h in PC3 cells, as 100 nM of DTX alone. Inhibition of microvesiculation similarly improved combination chemotherapy (DTX and methotrexate). In a mouse xenograft model of PCa, DTX (0.1 mg/kg) together with calpeptin (10 mg/kg), administered i.p., significantly reduced tumor volumes compared to DTX alone (0.1 mg/kg) and brought about the same reductions in tumor growth as 10 mg/kg of DTX alone. As well as further reducing vascularization, it also increased apoptosis and reduced proliferation of PC3 cells in tumor xenografts.


Biochemical and Biophysical Research Communications | 2015

Microvesicles released constitutively from prostate cancer cells differ biochemically and functionally to stimulated microvesicles released through sublytic C5b-9

Dan Stratton; Colin Moore; Samuel Antwi-Baffour; Sigrun Lange; Jameel M. Inal

We have classified microvesicles into two subtypes: larger MVs released upon stimulation of prostate cancer cells, sMVs, and smaller cMVs, released constitutively. cMVs are released as part of cell metabolism and sMVs, released at 10-fold higher levels, produced upon activation, including sublytic C5b-9. From electron microscopy, nanosight tracking analysis, dynamic light scattering and flow cytometry, cMVs (194-210 nm in diameter) are smaller than sMVs (333-385 nm). Furthermore, using a Quartz Crystal Microbalance measuring changes in resonant frequency (Δf) that equate to mass deposited on a sensor, an sMV and a cMV are estimated at 0.267 and 0.241 pg, respectively. sMVs carry more calcium and protein, express higher levels of lipid rafts, GPI-anchored CD55 and phosphatidylserine including deposited C5b-9 compared to cMVs. This may allude to biological differences such as increased bound C4BP on sMVs inhibiting complement more effectively.


Biochemical and Biophysical Research Communications | 2015

Prostate cancer cells stimulated by calcium-mediated activation of protein kinase C undergo a refractory period before re-releasing calcium-bearing microvesicles

Dan Stratton; Colin Moore; Lei Zheng; Sigrun Lange; Jameel M. Inal

MVs are released in response to several stress agents, in an attempt to prevent continued cellular damage. After an initial stimulus of prostate cancer cells with sublytic C5b-9 and activation of MV release through PKC, cells take at least 20 min to fully recover their ability to microvesiculate. This release of MVs through activation of sublytic C5b-9 was inhibited by the PKC inhibitor bisindoylmaleimide I but not the Rho kinase inhibitor, Y27632. After stimulus there is a rise of 79 nMs(-1) over 11 s, reaching a peak [Ca(2+)]i of 920 nM. The concentration of cytosolic calcium then falls steadily at 2.4 nMs(-1) over 109 s reaching baseline levels (50-100 nM) within 10-15 min. In PC3 cells the rate of release of MVs from stimulated cells also reaches a minimum within 10-15 min. Using fura-2 AM-loaded cells, upon stimulation, cells were found to release MVs with a concentration of intravesicular calcium estimated at ∼ 430 nM.


Biochemical and Biophysical Research Communications | 2014

Label-free real-time acoustic sensing of microvesicle release from prostate cancer (PC3) cells using a Quartz Crystal Microbalance

Dan Stratton; Sigrun Lange; Sharad Kholia; Samireh Jorfi; Samuel Antwi-Baffour; Jameel M. Inal

Using a Quartz Crystal Microbalance with dissipation monitoring, QCM-D (label-free system) measuring changes in resonant frequency (Δf) that equate to mass deposited on a sensor, we showed the attachment, over a 60min period, of a monolayer of PC3 cells to the gold electrodes of the quartz crystal sensor, which had been rendered hydrophilic. That MVs were released upon BzATP stimulation of cells was confirmed by NTA analysis (average 250nm diameter), flow cytometry, showing high phosphatidylserine exposition and by fluorescent (Annexin V Alexa Fluor® 488-positive) and electron microscopy. Over a period of 1000s (16.7min) during which early apoptosis increased from 4% plateauing at 10% and late apoptosis rose to 2%, the Δf increased 20Hz, thereupon remaining constant for the last 1000s of the experiment. Using the Sauerbrey equation, the loss in mass, which corresponded to the release of 2.36×10(6)MVs, was calculated to be 23ng. We therefore estimated the mass of an MV to be 0.24pg. With the deposition on the QCM-D of 3.5×10(7)MVs over 200s, the decrease in Δf (Hz) gave an estimate of 0.235pg per MV.

Collaboration


Dive into the Dan Stratton's collaboration.

Top Co-Authors

Avatar

Jameel M. Inal

London Metropolitan University

View shared research outputs
Top Co-Authors

Avatar

Sigrun Lange

University College London

View shared research outputs
Top Co-Authors

Avatar

Samuel Antwi-Baffour

London Metropolitan University

View shared research outputs
Top Co-Authors

Avatar

Ephraim Ansa-Addo

London Metropolitan University

View shared research outputs
Top Co-Authors

Avatar

Samireh Jorfi

London Metropolitan University

View shared research outputs
Top Co-Authors

Avatar

Sharad Kholia

London Metropolitan University

View shared research outputs
Top Co-Authors

Avatar

Ryan Grant

London Metropolitan University

View shared research outputs
Top Co-Authors

Avatar

Colin Moore

London Metropolitan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher P. Palmer

London Metropolitan University

View shared research outputs
Researchain Logo
Decentralizing Knowledge