Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jameel M. Inal is active.

Publication


Featured researches published by Jameel M. Inal.


PLOS Biology | 2012

Vesiclepedia: A Compendium for Extracellular Vesicles with Continuous Community Annotation

Hina Kalra; Richard J. Simpson; Hong Ji; Elena Aikawa; Peter Altevogt; Philip W. Askenase; Vincent C. Bond; Francesc E. Borràs; Xandra O. Breakefield; Vivian Budnik; Edit I. Buzás; Giovanni Camussi; Aled Clayton; Emanuele Cocucci; Juan M. Falcon-Perez; Susanne Gabrielsson; Yong Song Gho; Dwijendra K. Gupta; H. C. Harsha; An Hendrix; Andrew F. Hill; Jameel M. Inal; Guido Jenster; Eva-Maria Krämer-Albers; Sai Kiang Lim; Alicia Llorente; Jan Lötvall; Antonio Marcilla; Lucia Mincheva-Nilsson; Irina Nazarenko

Vesiclepedia is a community-annotated compendium of molecular data on extracellular vesicles.


Bioinformatics | 2015

EVpedia: a community web portal for extracellular vesicles research

Dae-Kyum Kim; Jaewook Lee; Sae Rom Kim; Dong Sic Choi; Yae Jin Yoon; Ji Hyun Kim; Gyeongyun Go; Dinh Nhung; Kahye Hong; Su Chul Jang; Si-Hyun Kim; Kyong-Su Park; Oh Youn Kim; Hyun Taek Park; Jihye Seo; Elena Aikawa; Monika Baj-Krzyworzeka; Bas W. M. van Balkom; Mattias Belting; Lionel Blanc; Vincent C. Bond; Antonella Bongiovanni; Francesc E. Borràs; Luc Buée; Edit I. Buzás; Lesley Cheng; Aled Clayton; Emanuele Cocucci; Charles S. Dela Cruz; Dominic M. Desiderio

MOTIVATION Extracellular vesicles (EVs) are spherical bilayered proteolipids, harboring various bioactive molecules. Due to the complexity of the vesicular nomenclatures and components, online searches for EV-related publications and vesicular components are currently challenging. RESULTS We present an improved version of EVpedia, a public database for EVs research. This community web portal contains a database of publications and vesicular components, identification of orthologous vesicular components, bioinformatic tools and a personalized function. EVpedia includes 6879 publications, 172 080 vesicular components from 263 high-throughput datasets, and has been accessed more than 65 000 times from more than 750 cities. In addition, about 350 members from 73 international research groups have participated in developing EVpedia. This free web-based database might serve as a useful resource to stimulate the emerging field of EV research. AVAILABILITY AND IMPLEMENTATION The web site was implemented in PHP, Java, MySQL and Apache, and is freely available at http://evpedia.info.


Journal of Immunological Methods | 2011

A filtration-based protocol to isolate human Plasma Membrane-derived Vesicles and exosomes from blood plasma

Ryan Grant; Ephraim Ansa-Addo; Dan Stratton; Samuel Antwi-Baffour; Samireh Jorfi; Sharad Kholia; Lizelle Krige; Sigrun Lange; Jameel M. Inal

The methods of Plasma Membrane-derived Vesicle (PMV) isolation and quantification vary considerably in the literature and a new standard needs to be defined. This study describes a novel filtration method to isolate PMVs in plasma, which avoids high speed centrifugation, and to quantify them using a Becton Dickinson (BD) FACS Calibur™ flow cytometer, as annexin V-positive vesicles, larger than 0.2 μm in diameter. Essentially microvesicles (which comprise a mixture of PMVs and exosomes) from citrate plasma were sonicated to break up clumped exosomes, and filtered using Millipore 0.1 μm pore size Hydrophilic Durapore membranes in Swinnex 13 mm filter holders. Phosphatidylserine-positive PMVs detected with annexin V-PE were quantified using combined labelling and gating strategies in conjunction with Polysciences Polybead Microspheres (0.2 μm) and BDTrucount tubes. The PMV absolute count was calculated on the analysis template using the Trucount tube lot number information and expressed in PMV count/ml. Having estimated a normal reference range (0.51×10(5)-2.82×10(5) PMVs/ml) from a small sample of human donors, using the developed method, the effect of certain variables was investigated. Variations such as freezing of samples and gender status did not significantly alter the PMV absolute count, and with age plasma PMV levels were only marginally reduced. Smokers appeared to have reduced PMV levels. Nicotine, as for calpeptin was shown to dose-dependently (from 10 up to 50 μM) reduce levels of early apoptosis in THP-1 monocytes and to decrease the level of PMV release. Fasting individuals had 2-3 fold higher PMV absolute counts compared to non-fasting subjects.


Journal of Immunology | 2012

Trypanosoma cruzi immune evasion mediated by host cell-derived microvesicles

Igor Cestari; Ephraim Ansa-Addo; Poliana Deolindo; Jameel M. Inal; Marcel I. Ramirez

The innate immune system is the first mechanism of vertebrate defense against pathogen infection. In this study, we present evidence for a novel immune evasion mechanism of Trypanosoma cruzi, mediated by host cell plasma membrane-derived vesicles. We found that T. cruzi metacyclic trypomastigotes induced microvesicle release from blood cells early in infection. Upon their release, microvesicles formed a complex on the T. cruzi surface with the complement C3 convertase, leading to its stabilization and inhibition, and ultimately resulting in increased parasite survival. Furthermore, we found that TGF-β–bearing microvesicles released from monocytes and lymphocytes promoted rapid cell invasion by T. cruzi, which also contributed to parasites escaping the complement attack. In addition, in vivo infection with T. cruzi showed a rapid increase of microvesicle levels in mouse plasma, and infection with exogenous microvesicles resulted in increased T. cruzi parasitemia. Altogether, these data support a role for microvesicles contributing to T. cruzi evasion of innate immunity.


Journal of extracellular vesicles | 2015

Exosomes serve as tumour markers for personalized diagnostics owing to their important role in cancer metastasis

Taixue An; Sihua Qin; Yong Xu; Yueting Tang; Yiyao Huang; Bo Situ; Jameel M. Inal; Lei Zheng

Exosomes, membrane vesicles of 40–100 nm in diameter, are derived from endosomes in various cells. The bioactive molecules specifically packed into exosomes can be horizontally transferred into recipient cells changing their biological properties, by which tumour cells continuously modify their surrounding microenvironment and distant target cells favouring cancer metastasis. It has been suspected for a long time that exosomes participate in the whole process of tumour metastasis. Although there is much unknown and many controversies in the role of cancer exosome, the major contribution of tumour-associated exosomes to different steps of cancer metastasis are demonstrated in this review. Mainly because these exosomes are easily accessible and capable of representing their parental cells, exosomes draw much attention as a promising biomarker for tumour screening, diagnosis and prognosis. Currently, researchers have found numerous biomarkers in exosomes with great potential to be utilized in personalized medicine. In this article, we summarize the roles of biomarkers, which are validated by clinical samples. Even though many conundrums remain, such as exosome extraction, large multicentre validation of biomarkers and data interpretation, exosomes are certain to be used in clinical practice in the near future as the field rapidly expands.


Molecular Immunology | 2009

Role of early lectin pathway activation in the complement-mediated killing of Trypanosoma cruzi.

Igor Cestari; Anders Krarup; Robert B. Sim; Jameel M. Inal; Marcel I. Ramirez

The complement system is the first line of defence against pathogen infection and can be activated by the classic, alternative and lectin pathways. Trypanosoma cruzi, the causative agent of Chagas disease, has to evade complement system killing and invade the host cells to progress in infection. T. cruzi infectious stages resist complement-mediated killing by expressing surface receptors, which dissociate or prevent C3 convertase formation. Here, we present the first evidence that T. cruzi activates the complement lectin pathway. We detected rapid binding of mannan-binding lectin, H-ficolin, and L-ficolin to the surface of T. cruzi, and found that serum depleted of these molecules failed to kill parasites. Furthermore, lectin pathway activation by T. cruzi required the MBL-associated serine protease 2 (MASP2) activity resulting in C2 factor cleavage. In addition, we demonstrate that the infectious stage of T. cruzi inhibits the lectin pathway activation and complement killing expressing the complement C2 receptor inhibitor trispanning (CRIT) protein. Transgenic parasites overexpressing CRIT were highly resistant to complement-mediated killing. CRIT-derived peptides inhibited both C2 binding to the surface of T. cruzi and parasite killing. Biochemical studies revealed that the CRIT extracellular domain 1 inhibits MASP2 cleavage of C2 factor and thereby impairs C3 convertase formation. Our findings establish that the complement lectin pathway recognizes T. cruzi and provide molecular insights into how the infectious stage inhibits this activation to resist complement system killing.


Biochimica et Biophysica Acta | 2013

Blood/plasma secretome and microvesicles.

Jameel M. Inal; Uchini S. Kosgodage; Sarah Azam; Dan Stratton; Samuel Antwi-Baffour; Sigrun Lange

A major but hitherto overseen component of the blood/plasma secretome is that of extracellular vesicles (EVs) which are shed from all blood cell types. These EVs are made up of microvesicles (MVs) and exosomes. MVs, 100nm-1μm in diameter, are released from the cell surface, and are a rich source of non-conventionally secreted proteins lacking a conventional signal peptide, and thus not secreted by the classical secretory pathways. Exosomes are smaller vesicles (≤100nm) having an endocytic origin and released upon multivesicular body fusion with the plasma membrane. Both vesicle types play major roles in intercellular cross talk and constitute an important component of the secretome especially in the area of biomarkers for cancer. The release of EVs, which are found in all the bodily fluids, is enhanced in cancer and a major focus of cancer proteomics is therefore targeted at EVs. The blood/plasma secretome is also a source of EVs, potentially diagnostic of infectious disease, whether from EVs released from infected cells or from the pathogens themselves. Despite the great excitement in this field, as is stated here and in other parts of this Special issue entitled: An Updated Secretome, much of the EV research, whether proteomic or functional in nature, urgently needs standardisation both in terms of nomenclature and isolation protocols. This article is part of a Special Issue entitled: An Updated Secretome.


Archivum Immunologiae Et Therapiae Experimentalis | 2012

Microvesicles in Health and Disease

Jameel M. Inal; Ephraim Ansa-Addo; Dan Stratton; Sharad Kholia; Samuel Antwi-Baffour; Samireh Jorfi; Sigrun Lange

Microvesicles (or MVs) are plasma membrane-derived vesicles released from most eukaryotic cells constitutively during early apoptosis or at higher levels after chemical or physical stress conditions. This review looks at some of the functions of MVs in terms of intercellular communication and ensuant signal transduction, including the transport of proteins (unconventional protein export) as well as of mRNA and microRNA. MVs also have roles in membrane repair, the removal of misfolded proteins, and in the control of apoptosis. We also discuss the role MVs have been shown to have in invasive growth and metastasis as well as in hypoxia in tumours and cerebral ischaemia. The association of MVs in infectious and autoimmune disease is also summarised together with their possible use as therapeutic agents.


Journal of Immunology | 2004

Complement Mediates the Binding of HIV to Erythrocytes

Eliska Horakova; Olivier Gasser; Salima Sadallah; Jameel M. Inal; Guillaume Bourgeois; Ingrid Ziekau; Thomas Klimkait; Jürg A. Schifferli

A fraction of HIV is associated with erythrocytes even when the virus becomes undetectable in plasma under antiretroviral therapy. The aim of the present work was to further characterize this association in vitro. We developed an in vitro model to study the factors involved in the adherence of HIV-1 to erythrocytes. Radiolabeled HIV-1 (HIV) and preformed HIV-1/anti-HIV immune complexes (HIV-IC) were opsonized in various human sera, purified using sucrose density gradient ultracentrifugation, and incubated with human erythrocytes. We observed that, when opsonized in normal human serum, not only HIV-IC, but also HIV, bound to erythrocytes, although the adherence of HIV was lower than that of HIV-IC. The adherence was abolished when the complement system was blocked, but was maintained in hypogammaglobulinemic sera. Complement-deficient sera indicated that both pathways of complement were important for optimal adherence. No adherence was seen in C1q-deficient serum, and the adherence of HIV was reduced when the alternative pathway was blocked using anti-factor D Abs. The adherence could be inhibited by an mAb against complement receptor 1. At supraphysiological concentrations, purified C1q mediated the binding of a small fraction of HIV and HIV-IC to erythrocytes. In conclusion, HIV-IC bound to erythrocytes as other types of IC do when exposed to complement. Of particular interest was that HIV alone bound also to erythrocytes in a complement/complement receptor 1-dependent manner. Thus, erythrocytes may not only deliver HIV-IC to organs susceptible to infection, but free HIV as well. This may play a crucial role in the progression of the primary infection.


Journal of Immunology | 2010

Human Plasma Membrane-Derived Vesicles Halt Proliferation and Induce Differentiation of THP-1 Acute Monocytic Leukemia Cells

Ephraim Ansa-Addo; Sigrun Lange; Dan Stratton; Samuel Antwi-Baffour; Igor Cestari; Marcel I. Ramirez; Maria V. McCrossan; Jameel M. Inal

Plasma membrane-derived vesicles (PMVs) are small intact vesicles released from the cell surface that play a role in intercellular communication. We have examined the role of PMVs in the terminal differentiation of monocytes. The myeloid-differentiating agents all-trans retinoic acid/PMA and histamine, the inflammatory mediator that inhibits promonocyte proliferation, induced an intracellular Ca2+-mediated PMV (as opposed to exosome) release from THP-1 promonocytes. These PMVs cause THP-1 cells to enter G0–G1 cell cycle arrest and induce terminal monocyte-to-macrophage differentiation. Use of the TGF-β receptor antagonist SB-431542 and anti–TGF-β1 Ab showed that this was due to TGF-β1 carried on PMVs. Although TGF-β1 levels have been shown to increase in cell culture supernatants during macrophage differentiation and dendritic cell maturation, the presence of TGF-β1 in PMVs is yet to be reported. In this study, to our knowledge we show for the first time that TGF-β1 is carried on the surface of PMVs, and we confirm the presence within PMVs of certain leaderless proteins, with reported roles in myeloid cell differentiation. Our in vitro findings support a model in which TGF-β1–bearing PMVs, released from promonocytic leukemia cells (THP-1) or primary peripheral blood monocytes on exposure to sublytic complement or after treatment with a differentiation therapy agent, such as all-trans retinoic acid, significantly reduce proliferation of THP-1 cells. Such PMVs also induce the terminal differentiation of primary peripheral blood monocytes as well as THP-1 monocytes.

Collaboration


Dive into the Jameel M. Inal's collaboration.

Top Co-Authors

Avatar

Sigrun Lange

University College London

View shared research outputs
Top Co-Authors

Avatar

Dan Stratton

London Metropolitan University

View shared research outputs
Top Co-Authors

Avatar

Ephraim Ansa-Addo

London Metropolitan University

View shared research outputs
Top Co-Authors

Avatar

Samuel Antwi-Baffour

London Metropolitan University

View shared research outputs
Top Co-Authors

Avatar

Samireh Jorfi

London Metropolitan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sharad Kholia

London Metropolitan University

View shared research outputs
Top Co-Authors

Avatar

Igor Cestari

Oswaldo Cruz Foundation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Uchini S. Kosgodage

London Metropolitan University

View shared research outputs
Researchain Logo
Decentralizing Knowledge