Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dana Branzei is active.

Publication


Featured researches published by Dana Branzei.


Nature Reviews Molecular Cell Biology | 2008

Regulation of DNA repair throughout the cell cycle

Dana Branzei; Marco Foiani

The repair of DNA lesions that occur endogenously or in response to diverse genotoxic stresses is indispensable for genome integrity. DNA lesions activate checkpoint pathways that regulate specific DNA-repair mechanisms in the different phases of the cell cycle. Checkpoint-arrested cells resume cell-cycle progression once damage has been repaired, whereas cells with unrepairable DNA lesions undergo permanent cell-cycle arrest or apoptosis. Recent studies have provided insights into the mechanisms that contribute to DNA repair in specific cell-cycle phases and have highlighted the mechanisms that ensure cell-cycle progression or arrest in normal and cancerous cells.


Nature Reviews Molecular Cell Biology | 2010

Maintaining genome stability at the replication fork

Dana Branzei; Marco Foiani

Aberrant DNA replication is a major source of the mutations and chromosome rearrangements that are associated with pathological disorders. When replication is compromised, DNA becomes more prone to breakage. Secondary structures, highly transcribed DNA sequences and damaged DNA stall replication forks, which then require checkpoint factors and specialized enzymatic activities for their stabilization and subsequent advance. These mechanisms ensure that the local DNA damage response, which enables replication fork progression and DNA repair in S phase, is coupled with cell cycle transitions. The mechanisms that operate in eukaryotic cells to promote replication fork integrity and coordinate replication with other aspects of chromosome maintenance are becoming clear.


Cell | 2006

Ubc9- and mms21-mediated sumoylation counteracts recombinogenic events at damaged replication forks.

Dana Branzei; Julie Sollier; Giordano Liberi; Xiaolan Zhao; Daisuke Maeda; Masayuki Seki; Takemi Enomoto; Kunihiro Ohta; Marco Foiani

The Ubc9 SUMO-conjugating enzyme and the Siz1 SUMO ligase sumoylate several repair and recombination proteins, including PCNA. Sumoylated PCNA binds Srs2, a helicase counteracting certain recombination events. Here we show that ubc9 mutants depend on checkpoint, recombination, and replication genes for growth. ubc9 cells maintain stalled-fork stability but exhibit a Rad51-dependent accumulation of cruciform structures during replication of damaged templates. Mutations in the Mms21 SUMO ligase resemble the ubc9 mutations. However, siz1, srs2, or pcna mutants altered in sumoylation do not exhibit the ubc9/mms21 phenotype. Like ubc9/mms21 mutants, sgs1 and top3 mutants also accumulate X molecules at damaged forks, and Sgs1/BLM is sumoylated. We propose that Ubc9 and Mms21 act in concert with Sgs1 to resolve the X structures formed during replication. Our results indicate that Ubc9- and Mms21-mediated sumoylation functions as a regulatory mechanism, different from that of replication checkpoints, to prevent pathological accumulation of cruciform structures at damaged forks.


Nature | 2008

SUMOylation regulates Rad18-mediated template switch

Dana Branzei; Fabio Vanoli; Marco Foiani

Replication by template switch is thought to mediate DNA damage-bypass and fillings of gaps. Gap-filling repair requires homologous recombination as well as Rad18- and Rad5-mediated proliferating cell nuclear antigen (PCNA) polyubiquitylation. However, it is unclear whether these processes are coordinated, and the physical evidence for Rad18–Rad5-dependent template switch at replication forks is still elusive. Here we show, using genetic and physical approaches, that in budding yeast (Saccharomyces cerevisiae) Rad18 is required for the formation of X-shaped sister chromatid junctions (SCJs) at damaged replication forks through a process involving PCNA polyubiquitylation and the ubiquitin-conjugating enzymes Mms2 and Ubc13. The Rad18–Mms2-mediated damage-bypass through SCJs requires the small ubiquitin-like modifier (SUMO)-conjugating enzyme Ubc9 and SUMOylated PCNA, and is coordinated with Rad51-dependent recombination events. We propose that the Rad18–Rad5–Mms2-dependent SCJs represent template switch events. Altogether, our results unmask a role for PCNA ubiquitylation and SUMOylation pathways in promoting transient damage-induced replication-coupled recombination events involving sister chromatids at replication forks.


DNA Repair | 2009

The checkpoint response to replication stress.

Dana Branzei; Marco Foiani

Genome instability is a hallmark of cancer cells, and defective DNA replication, repair and recombination have been linked to its etiology. Increasing evidence suggests that proteins influencing S-phase processes such as replication fork movement and stability, repair events and replication completion, have significant roles in maintaining genome stability. DNA damage and replication stress activate a signal transduction cascade, often referred to as the checkpoint response. A central goal of the replication checkpoint is to maintain the integrity of the replication forks while facilitating replication completion and DNA repair and coordinating these events with cell cycle transitions. Progression through the cell cycle in spite of defective or incomplete DNA synthesis or unrepaired DNA lesions may result in broken chromosomes, genome aberrations, and an accumulation of mutations. In this review we discuss the multiple roles of the replication checkpoint during replication and in response to replication stress, as well as the enzymatic activities that cooperate with the checkpoint pathway to promote fork resumption and repair of DNA lesions thereby contributing to genome integrity.


The EMBO Journal | 2013

Premature Cdk1/Cdc5/Mus81 pathway activation induces aberrant replication and deleterious crossover

Barnabas Szakal; Dana Branzei

The error‐free DNA damage tolerance (DDT) pathway is crucial for replication completion and genome integrity. Mechanistically, this process is driven by a switch of templates accompanied by sister chromatid junction (SCJ) formation. Here, we asked if DDT intermediate processing is temporarily regulated, and what impact such regulation may have on genome stability. We find that persistent DDT recombination intermediates are largely resolved before anaphase through a G2/M damage checkpoint‐independent, but Cdk1/Cdc5‐dependent pathway that proceeds via a previously described Mus81‐Mms4‐activating phosphorylation. The Sgs1‐Top3‐ and Mus81‐Mms4‐dependent resolution pathways occupy different temporal windows in relation to replication, with the Mus81‐Mms4 pathway being restricted to late G2/M. Premature activation of the Cdk1/Cdc5/Mus81 pathway, achieved here with phosphomimetic Mms4 variants as well as in S‐phase checkpoint‐deficient genetic backgrounds, induces crossover‐associated chromosome translocations and precocious processing of damage‐bypass SCJ intermediates. Taken together, our results underscore the importance of uncoupling error‐free versus erroneous recombination intermediate processing pathways during replication, and establish a new paradigm for the role of the DNA damage response in regulating genome integrity by controlling crossover timing.


Molecular Biology of the Cell | 2009

The Saccharomyces cerevisiae Esc2 and Smc5-6 Proteins Promote Sister Chromatid Junction-mediated Intra-S Repair

Julie Sollier; Robert Driscoll; Federica Castellucci; Marco Foiani; Dana Branzei

Recombination is important for DNA repair, but it can also contribute to genome rearrangements. RecQ helicases, including yeast Sgs1 and human BLM, safeguard genome integrity through their functions in DNA recombination. Sgs1 prevents the accumulation of Rad51-dependent sister chromatid junctions at damaged replication forks, and its functionality seems to be regulated by Ubc9- and Mms21-dependent sumoylation. We show that mutations in Smc5-6 and Esc2 also lead to an accumulation of recombinogenic structures at damaged replication forks. Because Smc5-6 is sumoylated in an Mms21-dependent manner, this finding suggests that Smc5-6 may be a crucial target of Mms21 implicated in this process. Our data reveal that Smc5-6 and Esc2 are required to tolerate DNA damage and that their functionality is critical in genotoxic conditions in the absence of Sgs1. As reported previously for Sgs1 and Smc5-6, we find that Esc2 physically interacts with Ubc9 and SUMO. This interaction is correlated with the ability of Esc2 to promote DNA damage tolerance. Collectively, these data suggest that Esc2 and Smc5-6 act in concert with Sgs1 to prevent the accumulation of recombinogenic structures at damaged replication forks, likely by integrating sumoylation activities to regulate the repair pathways in response to damaged DNA.


PLOS Genetics | 2010

Replication and Recombination Factors Contributing to Recombination-Dependent Bypass of DNA Lesions by Template Switch

Fabio Vanoli; Marco Fumasoni; Barnabas Szakal; Laurent Maloisel; Dana Branzei

Damage tolerance mechanisms mediating damage-bypass and gap-filling are crucial for genome integrity. A major damage tolerance pathway involves recombination and is referred to as template switch. Template switch intermediates were visualized by 2D gel electrophoresis in the proximity of replication forks as X-shaped structures involving sister chromatid junctions. The homologous recombination factor Rad51 is required for the formation/stabilization of these intermediates, but its mode of action remains to be investigated. By using a combination of genetic and physical approaches, we show that the homologous recombination factors Rad55 and Rad57, but not Rad59, are required for the formation of template switch intermediates. The replication-proficient but recombination-defective rfa1-t11 mutant is normal in triggering a checkpoint response following DNA damage but is impaired in X-structure formation. The Exo1 nuclease also has stimulatory roles in this process. The checkpoint kinase, Rad53, is required for X-molecule formation and phosphorylates Rad55 robustly in response to DNA damage. Although Rad55 phosphorylation is thought to activate recombinational repair under conditions of genotoxic stress, we find that Rad55 phosphomutants do not affect the efficiency of X-molecule formation. We also examined the DNA polymerase implicated in the DNA synthesis step of template switch. Deficiencies in translesion synthesis polymerases do not affect X-molecule formation, whereas DNA polymerase δ, required also for bulk DNA synthesis, plays an important role. Our data indicate that a subset of homologous recombination factors, together with DNA polymerase δ, promote the formation of template switch intermediates that are then preferentially dissolved by the action of the Sgs1 helicase in association with the Top3 topoisomerase rather than resolved by Holliday Junction nucleases. Our results allow us to propose the choreography through which different players contribute to template switch in response to DNA damage and to distinguish this process from other recombination-mediated processes promoting DNA repair.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Interplay between the Smc5/6 complex and the Mph1 helicase in recombinational repair

Yu-Hung Chen; Koyi Choi; Barnabas Szakal; Jacqueline Arenz; Xinyuan Duan; Hong Ye; Dana Branzei; Xiaolan Zhao

The evolutionarily conserved Smc5/6 complex is implicated in recombinational repair, but its function in this process has been elusive. Here we report that the budding yeast Smc5/6 complex directly binds to the DNA helicase Mph1. Mph1 and its helicase activity define a replication-associated recombination subpathway. We show that this pathway is toxic when the Smc5/6 complex is defective, because mph1Δ and its helicase mutations suppress multiple defects in mutants of the Smc5/6 complex, including their sensitivity to replication-blocking agents, growth defects, and inefficient chromatid separation, whereas MPH1 overexpression exacerbates some of these defects. We further demonstrate that Mph1 and its helicase activity are largely responsible for the accumulation of potentially deleterious recombination intermediates in mutants of the Smc5/6 complex. We also present evidence that mph1Δ does not alleviate sensitivity to DNA damage or the accumulation of recombination intermediates in cells lacking Sgs1, which is thought to function together with the Smc5/6 complex. Thus, our results reveal a function of the Smc5/6 complex in the Mph1-dependent recombinational subpathway that is distinct from Sgs1. We suggest that the Smc5/6 complex can counteract/modulate a pro-recombinogenic function of Mph1 or facilitate the resolution of recombination structures generated by Mph1.


Molecular Biology of the Cell | 2010

The Smc5/6 Complex and Esc2 Influence Multiple Replication-associated Recombination Processes in Saccharomyces cerevisiae

Koyi Choi; Barnabas Szakal; Yu-Hung Chen; Dana Branzei; Xiaolan Zhao

This work shows that Mph1, Mms2, and the Shu complex function in distinct pathways in replication-associated recombinational repair and that the Smc5/6 complex and Esc2 prevent the accumulation of toxic recombination intermediates generated in these pathways.

Collaboration


Dive into the Dana Branzei's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Barnabas Szakal

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiaolan Zhao

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takuya Abe

Tokyo Metropolitan University

View shared research outputs
Top Co-Authors

Avatar

Koyi Choi

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yu-Hung Chen

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge