Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dana C. Crawford is active.

Publication


Featured researches published by Dana C. Crawford.


Genetics in Medicine | 2001

FMR1 and the fragile X syndrome: Human genome epidemiology review

Dana C. Crawford; Juan Acuña; Stephanie L. Sherman

The fragile X syndrome, an X-linked dominant disorder with reduced penetrance, is one of the most common forms of inherited mental retardation. The cognitive, behavioral, and physical phenotype varies by sex, with males being more severely affected because of the X-linked inheritance of the mutation. The disorder-causing mutation is the amplification of a CGG repeat in the 5′ untranslated region of FMR1 located at Xq27.3. The fragile X CGG repeat has four forms: common (6–40 repeats), intermediate (41–60 repeats), premutation (61–200 repeats), and full mutation (>200–230 repeats). Population-based studies suggest that the prevalence of the full mutation, the disorder-causing form of the repeat, ranges from 1/3,717 to 1/8,918 Caucasian males in the general population. The full mutation is also found in other racial/ethnic populations; however, few population-based studies exist for these populations. No population-based studies exist for the full mutation in a general female population. In contrast, several large, population-based studies exist for the premutation or carrier form of the disorder, with prevalence estimates ranging from 1/246 to 1/468 Caucasian females in the general population. For Caucasian males, the prevalence of the premutation is ∼1/1,000. Like the full mutation, little information exists for the premutation in other populations. Although no effective cure or treatment exists for the fragile X syndrome, all persons affected with the syndrome are eligible for early intervention services. The relatively high prevalence of the premutation and full mutation genotypes coupled with technological advances in genetic testing make the fragile X syndrome amenable to screening. The timing as well as benefits and harms associated with the different screening strategies are the subject of current research and discussion.


Bioinformatics | 2010

PheWAS: demonstrating the feasibility of a phenome-wide scan to discover gene-disease associations

Joshua C. Denny; Marylyn D. Ritchie; Melissa A. Basford; Jill M. Pulley; Kristin Brown-Gentry; Deede Wang; Daniel R. Masys; Dan M. Roden; Dana C. Crawford

Motivation: Emergence of genetic data coupled to longitudinal electronic medical records (EMRs) offers the possibility of phenome-wide association scans (PheWAS) for disease–gene associations. We propose a novel method to scan phenomic data for genetic associations using International Classification of Disease (ICD9) billing codes, which are available in most EMR systems. We have developed a code translation table to automatically define 776 different disease populations and their controls using prevalent ICD9 codes derived from EMR data. As a proof of concept of this algorithm, we genotyped the first 6005 European–Americans accrued into BioVU, Vanderbilts DNA biobank, at five single nucleotide polymorphisms (SNPs) with previously reported disease associations: atrial fibrillation, Crohns disease, carotid artery stenosis, coronary artery disease, multiple sclerosis, systemic lupus erythematosus and rheumatoid arthritis. The PheWAS software generated cases and control populations across all ICD9 code groups for each of these five SNPs, and disease-SNP associations were analyzed. The primary outcome of this study was replication of seven previously known SNP–disease associations for these SNPs. Results: Four of seven known SNP–disease associations using the PheWAS algorithm were replicated with P-values between 2.8 × 10−6 and 0.011. The PheWAS algorithm also identified 19 previously unknown statistical associations between these SNPs and diseases at P < 0.01. This study indicates that PheWAS analysis is a feasible method to investigate SNP–disease associations. Further evaluation is needed to determine the validity of these associations and the appropriate statistical thresholds for clinical significance. Availability:The PheWAS software and code translation table are freely available at http://knowledgemap.mc.vanderbilt.edu/research. Contact: [email protected]


Nature Biotechnology | 2013

Systematic comparison of phenome-wide association study of electronic medical record data and genome-wide association study data

Joshua C. Denny; Marylyn D. Ritchie; Robert J. Carroll; Raquel Zink; Jonathan D. Mosley; Julie R. Field; Jill M. Pulley; Andrea H. Ramirez; Erica Bowton; Melissa A. Basford; David Carrell; Peggy L. Peissig; Abel N. Kho; Jennifer A. Pacheco; Luke V. Rasmussen; David R. Crosslin; Paul K. Crane; Jyotishman Pathak; Suzette J. Bielinski; Sarah A. Pendergrass; Hua Xu; Lucia A. Hindorff; Rongling Li; Teri A. Manolio; Christopher G. Chute; Rex L. Chisholm; Eric B. Larson; Gail P. Jarvik; Murray H. Brilliant; Catherine A. McCarty

Candidate gene and genome-wide association studies (GWAS) have identified genetic variants that modulate risk for human disease; many of these associations require further study to replicate the results. Here we report the first large-scale application of the phenome-wide association study (PheWAS) paradigm within electronic medical records (EMRs), an unbiased approach to replication and discovery that interrogates relationships between targeted genotypes and multiple phenotypes. We scanned for associations between 3,144 single-nucleotide polymorphisms (previously implicated by GWAS as mediators of human traits) and 1,358 EMR-derived phenotypes in 13,835 individuals of European ancestry. This PheWAS replicated 66% (51/77) of sufficiently powered prior GWAS associations and revealed 63 potentially pleiotropic associations with P < 4.6 × 10−6 (false discovery rate < 0.1); the strongest of these novel associations were replicated in an independent cohort (n = 7,406). These findings validate PheWAS as a tool to allow unbiased interrogation across multiple phenotypes in EMR-based cohorts and to enhance analysis of the genomic basis of human disease.


Blood | 2010

Warfarin pharmacogenetics: a single VKORC1 polymorphism is predictive of dose across 3 racial groups

Nita A. Limdi; Mia Wadelius; Larisa H. Cavallari; Niclas Eriksson; Dana C. Crawford; Ming Ta M. Lee; Chien Hsiun Chen; Alison A. Motsinger-Reif; Hersh Sagreiya; Nianjun Liu; Alan H.B. Wu; Brian F. Gage; Andrea Jorgensen; Munir Pirmohamed; Jae Gook Shin; Guilherme Suarez-Kurtz; Stephen E. Kimmel; Julie A. Johnson; Teri E. Klein; Michael J. Wagner

Warfarin-dosing algorithms incorporating CYP2C9 and VKORC1 -1639G>A improve dose prediction compared with algorithms based solely on clinical and demographic factors. However, these algorithms better capture dose variability among whites than Asians or blacks. Herein, we evaluate whether other VKORC1 polymorphisms and haplotypes explain additional variation in warfarin dose beyond that explained by VKORC1 -1639G>A among Asians (n = 1103), blacks (n = 670), and whites (n = 3113). Participants were recruited from 11 countries as part of the International Warfarin Pharmacogenetics Consortium effort. Evaluation of the effects of individual VKORC1 single nucleotide polymorphisms (SNPs) and haplotypes on warfarin dose used both univariate and multi variable linear regression. VKORC1 -1639G>A and 1173C>T individually explained the greatest variance in dose in all 3 racial groups. Incorporation of additional VKORC1 SNPs or haplotypes did not further improve dose prediction. VKORC1 explained greater variability in dose among whites than blacks and Asians. Differences in the percentage of variance in dose explained by VKORC1 across race were largely accounted for by the frequency of the -1639A (or 1173T) allele. Thus, clinicians should recognize that, although at a population level, the contribution of VKORC1 toward dose requirements is higher in whites than in nonwhites; genotype predicts similar dose requirements across racial groups.


Clinical Pharmacology & Therapeutics | 2012

Operational Implementation of Prospective Genotyping for Personalized Medicine: The Design of the Vanderbilt PREDICT Project

Jill M. Pulley; Joshua C. Denny; Josh F. Peterson; Gordon R. Bernard; Cindy L. Vnencak-Jones; Andrea H. Ramirez; Jessica T. Delaney; Erica Bowton; Kevin B. Johnson; Dana C. Crawford; Jonathan S. Schildcrout; Daniel R. Masys; Holli H. Dilks; Russell A. Wilke; Ellen Wright Clayton; E Shultz; Michael Laposata; John McPherson; Jim Jirjis; Dan M. Roden

The promise of “personalized medicine” guided by an understanding of each individuals genome has been fostered by increasingly powerful and economical methods to acquire clinically relevant information. We describe the operational implementation of prospective genotyping linked to an advanced clinical decision‐support system to guide individualized health care in a large academic health center. This approach to personalized medicine entails engagement between patient and health‐care provider, identification of relevant genetic variations for implementation, assay reliability, point‐of‐care decision support, and necessary institutional investments. In one year, approximately 3,000 patients, most of whom were scheduled for cardiac catheterization, were genotyped on a multiplexed platform that included genotyping for CYP2C19 variants that modulate response to the widely used antiplatelet drug clopidogrel. These data are deposited into the electronic medical record (EMR), and point‐of‐care decision support is deployed when clopidogrel is prescribed for those with variant genotypes. The establishment of programs such as this is a first step toward implementing and evaluating strategies for personalized medicine.


American Journal of Human Genetics | 2010

Robust Replication of Genotype-Phenotype Associations across Multiple Diseases in an Electronic Medical Record

Marylyn D. Ritchie; Joshua C. Denny; Dana C. Crawford; Andrea H. Ramirez; Justin B. Weiner; Jill M. Pulley; Melissa A. Basford; Kristin Brown-Gentry; Jeffrey R. Balser; Daniel R. Masys; Jonathan L. Haines; Dan M. Roden

Large-scale DNA databanks linked to electronic medical record (EMR) systems have been proposed as an approach for rapidly generating large, diverse cohorts for discovery and replication of genotype-phenotype associations. However, the extent to which such resources are capable of delivering on this promise is unknown. We studied whether an EMR-linked DNA biorepository can be used to detect known genotype-phenotype associations for five diseases. Twenty-one SNPs previously implicated as common variants predisposing to atrial fibrillation, Crohn disease, multiple sclerosis, rheumatoid arthritis, or type 2 diabetes were successfully genotyped in 9483 samples accrued over 4 mo into BioVU, the Vanderbilt University Medical Center DNA biobank. Previously reported odds ratios (OR(PR)) ranged from 1.14 to 2.36. For each phenotype, natural language processing techniques and billing-code queries were used to identify cases (n = 70-698) and controls (n = 808-3818) from deidentified health records. Each of the 21 tests of association yielded point estimates in the expected direction. Previous genotype-phenotype associations were replicated (p < 0.05) in 8/14 cases when the OR(PR) was > 1.25, and in 0/7 with lower OR(PR). Statistically significant associations were detected in all analyses that were adequately powered. In each of the five diseases studied, at least one previously reported association was replicated. These data demonstrate that phenotypes representing clinical diagnoses can be extracted from EMR systems, and they support the use of DNA resources coupled to EMR systems as tools for rapid generation of large data sets required for replication of associations found in research cohorts and for discovery in genome science.


The Lancet | 2013

Genetic variants associated with warfarin dose in African-American individuals: a genome-wide association study

Minoli A. Perera; Larisa H. Cavallari; Nita A. Limdi; Eric R. Gamazon; Anuar Konkashbaev; Roxana Daneshjou; Anna Pluzhnikov; Dana C. Crawford; Jelai Wang; Nianjun Liu; Nicholas P. Tatonetti; Stephane Bourgeois; Harumi Takahashi; Yukiko Bradford; Benjamin Burkley; Robert J. Desnick; Jonathan L. Halperin; Sherief I. Khalifa; Taimour Y. Langaee; Steven A. Lubitz; Edith A. Nutescu; Matthew T. Oetjens; Mohamed H. Shahin; Shitalben R. Patel; Hersh Sagreiya; Matthew Tector; Karen E. Weck; Mark J. Rieder; Stuart A. Scott; Alan H.B. Wu

Summary Background VKORC1 and CYP2C9 are important contributors to warfarin dose variability, but explain less variability for individuals of African descent than for those of European or Asian descent. We aimed to identify additional variants contributing to warfarin dose requirements in African Americans. Methods We did a genome-wide association study of discovery and replication cohorts. Samples from African-American adults (aged ≥18 years) who were taking a stable maintenance dose of warfarin were obtained at International Warfarin Pharmacogenetics Consortium (IWPC) sites and the University of Alabama at Birmingham (Birmingham, AL, USA). Patients enrolled at IWPC sites but who were not used for discovery made up the independent replication cohort. All participants were genotyped. We did a stepwise conditional analysis, conditioning first for VKORC1 −1639G→A, followed by the composite genotype of CYP2C9*2 and CYP2C9*3. We prespecified a genome-wide significance threshold of p<5×10−8 in the discovery cohort and p<0·0038 in the replication cohort. Findings The discovery cohort contained 533 participants and the replication cohort 432 participants. After the prespecified conditioning in the discovery cohort, we identified an association between a novel single nucleotide polymorphism in the CYP2C cluster on chromosome 10 (rs12777823) and warfarin dose requirement that reached genome-wide significance (p=1·51×10−8). This association was confirmed in the replication cohort (p=5·04×10−5); analysis of the two cohorts together produced a p value of 4·5×10−12. Individuals heterozygous for the rs12777823 A allele need a dose reduction of 6·92 mg/week and those homozygous 9·34 mg/week. Regression analysis showed that the inclusion of rs12777823 significantly improves warfarin dose variability explained by the IWPC dosing algorithm (21% relative improvement). Interpretation A novel CYP2C single nucleotide polymorphism exerts a clinically relevant effect on warfarin dose in African Americans, independent of CYP2C9*2 and CYP2C9*3. Incorporation of this variant into pharmacogenetic dosing algorithms could improve warfarin dose prediction in this population. Funding National Institutes of Health, American Heart Association, Howard Hughes Medical Institute, Wisconsin Network for Health Research, and the Wellcome Trust.


Current protocols in human genetics | 2011

Quality Control Procedures for Genome‐Wide Association Studies

Stephen D. Turner; Loren L. Armstrong; Yuki Bradford; Christopher S. Carlson; Dana C. Crawford; Andrew Crenshaw; Mariza de Andrade; Kimberly F. Doheny; Jonathan L. Haines; Geoffrey Hayes; Gail P. Jarvik; Lan Jiang; Iftikhar J. Kullo; Rongling Li; Hua Ling; Teri A. Manolio; Martha E. Matsumoto; Catherine A. McCarty; Andrew McDavid; Daniel B. Mirel; Justin Paschall; Elizabeth W. Pugh; Luke V. Rasmussen; Russell A. Wilke; Rebecca L. Zuvich; Marylyn D. Ritchie

Genome‐wide association studies (GWAS) are being conducted at an unprecedented rate in population‐based cohorts and have increased our understanding of the pathophysiology of complex disease. Regardless of context, the practical utility of this information will ultimately depend upon the quality of the original data. Quality control (QC) procedures for GWAS are computationally intensive, operationally challenging, and constantly evolving. Here we enumerate some of the challenges in QC of GWAS data and describe the approaches that the electronic MEdical Records and Genomics (eMERGE) network is using for quality assurance in GWAS data, thereby minimizing potential bias and error in GWAS results. We discuss common issues associated with QC of GWAS data, including data file formats, software packages for data manipulation and analysis, sex chromosome anomalies, sample identity, sample relatedness, population substructure, batch effects, and marker quality. We propose best practices and discuss areas of ongoing and future research. Curr. Protoc. Hum. Genet. 68:1.19.1‐1.19.18


Circulation | 2010

Identification of Genomic Predictors of Atrioventricular Conduction: Using Electronic Medical Records as a Tool for Genome Science

Joshua C. Denny; Marylyn D. Ritchie; Dana C. Crawford; Jonathan S. Schildcrout; Andrea H. Ramirez; Jill M. Pulley; Melissa A. Basford; Daniel R. Masys; Jonathan L. Haines; Dan M. Roden

Background— Recent genome-wide association studies in which selected community populations are used have identified genomic signals in SCN10A influencing PR duration. The extent to which this can be demonstrated in cohorts derived from electronic medical records is unknown. Methods and Results— We performed a genome-wide association study on 2334 European American patients with normal ECGs without evidence of prior heart disease from the Vanderbilt DNA databank, BioVU, which accrues subjects from routine patient care. Subjects were identified by combinations of natural language processing, laboratory queries, and billing code queries of deidentified medical record data. Subjects were 58% female, of mean (±SD) age 54±15 years, and had mean PR intervals of 158±18 ms. Genotyping was performed with the use of the Illumina Human660W-Quad platform. Our results identify 4 single nucleotide polymorphisms (rs6800541, rs6795970, rs6798015, rs7430477) linked to SCN10A associated with PR interval (P=5.73×10−7 to 1.78×10−6). Conclusions— This genome-wide association study confirms a gene heretofore not implicated in cardiac pathophysiology as a modulator of PR interval in humans. This study is one of the first replication genome-wide association studies performed with the use of an electronic medical records–derived cohort, supporting their further use for genotype-phenotype analyses.Background— Recent genome-wide association studies in which selected community populations are used have identified genomic signals in SCN10A influencing PR duration. The extent to which this can be demonstrated in cohorts derived from electronic medical records is unknown. Methods and Results— We performed a genome-wide association study on 2334 European American patients with normal ECGs without evidence of prior heart disease from the Vanderbilt DNA databank, BioVU, which accrues subjects from routine patient care. Subjects were identified by combinations of natural language processing, laboratory queries, and billing code queries of deidentified medical record data. Subjects were 58% female, of mean (±SD) age 54±15 years, and had mean PR intervals of 158±18 ms. Genotyping was performed with the use of the Illumina Human660W-Quad platform. Our results identify 4 single nucleotide polymorphisms (rs6800541, rs6795970, rs6798015, rs7430477) linked to SCN10A associated with PR interval ( P =5.73×10−7 to 1.78×10−6). Conclusions— This genome-wide association study confirms a gene heretofore not implicated in cardiac pathophysiology as a modulator of PR interval in humans. This study is one of the first replication genome-wide association studies performed with the use of an electronic medical records–derived cohort, supporting their further use for genotype-phenotype analyses. # Clinical Perspective {#article-title-26}


American Journal of Epidemiology | 2011

The Next PAGE in Understanding Complex Traits: Design for the Analysis of Population Architecture Using Genetics and Epidemiology (PAGE) Study

Tara C. Matise; José Luis Ambite; Steven Buyske; Christopher S. Carlson; Shelley A. Cole; Dana C. Crawford; Christopher A. Haiman; Gerardo Heiss; Charles Kooperberg; Loic Le Marchand; Teri A. Manolio; Kari E. North; Ulrike Peters; Marylyn D. Ritchie; Lucia A. Hindorff; Jonathan L. Haines

Genetic studies have identified thousands of variants associated with complex traits. However, most association studies are limited to populations of European descent and a single phenotype. The Population Architecture using Genomics and Epidemiology (PAGE) Study was initiated in 2008 by the National Human Genome Research Institute to investigate the epidemiologic architecture of well-replicated genetic variants associated with complex diseases in several large, ethnically diverse population-based studies. Combining DNA samples and hundreds of phenotypes from multiple cohorts, PAGE is well-suited to address generalization of associations and variability of effects in diverse populations; identify genetic and environmental modifiers; evaluate disease subtypes, intermediate phenotypes, and biomarkers; and investigate associations with novel phenotypes. PAGE investigators harmonize phenotypes across studies where possible and perform coordinated cohort-specific analyses and meta-analyses. PAGE researchers are genotyping thousands of genetic variants in up to 121,000 DNA samples from African-American, white, Hispanic/Latino, Asian/Pacific Islander, and American Indian participants. Initial analyses will focus on single nucleotide polymorphisms (SNPs) associated with obesity, lipids, cardiovascular disease, type 2 diabetes, inflammation, various cancers, and related biomarkers. PAGE SNPs are also assessed for pleiotropy using the “phenome-wide association study” approach, testing each SNP for associations with hundreds of phenotypes. PAGE data will be deposited into the National Center for Biotechnology Informations Database of Genotypes and Phenotypes and made available via a custom browser.

Collaboration


Dive into the Dana C. Crawford's collaboration.

Top Co-Authors

Avatar

Marylyn D. Ritchie

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dan M. Roden

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Joshua C. Denny

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Lucia A. Hindorff

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jonathan L. Haines

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Sarah A. Pendergrass

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge