Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kristin Brown-Gentry is active.

Publication


Featured researches published by Kristin Brown-Gentry.


Bioinformatics | 2010

PheWAS: demonstrating the feasibility of a phenome-wide scan to discover gene-disease associations

Joshua C. Denny; Marylyn D. Ritchie; Melissa A. Basford; Jill M. Pulley; Kristin Brown-Gentry; Deede Wang; Daniel R. Masys; Dan M. Roden; Dana C. Crawford

Motivation: Emergence of genetic data coupled to longitudinal electronic medical records (EMRs) offers the possibility of phenome-wide association scans (PheWAS) for disease–gene associations. We propose a novel method to scan phenomic data for genetic associations using International Classification of Disease (ICD9) billing codes, which are available in most EMR systems. We have developed a code translation table to automatically define 776 different disease populations and their controls using prevalent ICD9 codes derived from EMR data. As a proof of concept of this algorithm, we genotyped the first 6005 European–Americans accrued into BioVU, Vanderbilts DNA biobank, at five single nucleotide polymorphisms (SNPs) with previously reported disease associations: atrial fibrillation, Crohns disease, carotid artery stenosis, coronary artery disease, multiple sclerosis, systemic lupus erythematosus and rheumatoid arthritis. The PheWAS software generated cases and control populations across all ICD9 code groups for each of these five SNPs, and disease-SNP associations were analyzed. The primary outcome of this study was replication of seven previously known SNP–disease associations for these SNPs. Results: Four of seven known SNP–disease associations using the PheWAS algorithm were replicated with P-values between 2.8 × 10−6 and 0.011. The PheWAS algorithm also identified 19 previously unknown statistical associations between these SNPs and diseases at P < 0.01. This study indicates that PheWAS analysis is a feasible method to investigate SNP–disease associations. Further evaluation is needed to determine the validity of these associations and the appropriate statistical thresholds for clinical significance. Availability:The PheWAS software and code translation table are freely available at http://knowledgemap.mc.vanderbilt.edu/research. Contact: [email protected]


American Journal of Human Genetics | 2010

Robust Replication of Genotype-Phenotype Associations across Multiple Diseases in an Electronic Medical Record

Marylyn D. Ritchie; Joshua C. Denny; Dana C. Crawford; Andrea H. Ramirez; Justin B. Weiner; Jill M. Pulley; Melissa A. Basford; Kristin Brown-Gentry; Jeffrey R. Balser; Daniel R. Masys; Jonathan L. Haines; Dan M. Roden

Large-scale DNA databanks linked to electronic medical record (EMR) systems have been proposed as an approach for rapidly generating large, diverse cohorts for discovery and replication of genotype-phenotype associations. However, the extent to which such resources are capable of delivering on this promise is unknown. We studied whether an EMR-linked DNA biorepository can be used to detect known genotype-phenotype associations for five diseases. Twenty-one SNPs previously implicated as common variants predisposing to atrial fibrillation, Crohn disease, multiple sclerosis, rheumatoid arthritis, or type 2 diabetes were successfully genotyped in 9483 samples accrued over 4 mo into BioVU, the Vanderbilt University Medical Center DNA biobank. Previously reported odds ratios (OR(PR)) ranged from 1.14 to 2.36. For each phenotype, natural language processing techniques and billing-code queries were used to identify cases (n = 70-698) and controls (n = 808-3818) from deidentified health records. Each of the 21 tests of association yielded point estimates in the expected direction. Previous genotype-phenotype associations were replicated (p < 0.05) in 8/14 cases when the OR(PR) was > 1.25, and in 0/7 with lower OR(PR). Statistically significant associations were detected in all analyses that were adequately powered. In each of the five diseases studied, at least one previously reported association was replicated. These data demonstrate that phenotypes representing clinical diagnoses can be extracted from EMR systems, and they support the use of DNA resources coupled to EMR systems as tools for rapid generation of large data sets required for replication of associations found in research cohorts and for discovery in genome science.


PLOS Genetics | 2011

Genetic Determinants of Lipid Traits in Diverse Populations from the Population Architecture using Genomics and Epidemiology (PAGE) Study

Logan Dumitrescu; Cara L. Carty; Kira C. Taylor; Fredrick R. Schumacher; Lucia A. Hindorff; José Luis Ambite; Garnet L. Anderson; Lyle G. Best; Kristin Brown-Gentry; Petra Bůžková; Christopher S. Carlson; Barbara Cochran; Shelley A. Cole; Richard B. Devereux; Dave Duggan; Charles B. Eaton; Myriam Fornage; Nora Franceschini; Jeff Haessler; Barbara V. Howard; Karen C. Johnson; Sandra Laston; Laurence N. Kolonel; Elisa T. Lee; Jean W. MacCluer; Teri A. Manolio; Sarah A. Pendergrass; Miguel Quibrera; Ralph V. Shohet; Lynne R. Wilkens

For the past five years, genome-wide association studies (GWAS) have identified hundreds of common variants associated with human diseases and traits, including high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and triglyceride (TG) levels. Approximately 95 loci associated with lipid levels have been identified primarily among populations of European ancestry. The Population Architecture using Genomics and Epidemiology (PAGE) study was established in 2008 to characterize GWAS–identified variants in diverse population-based studies. We genotyped 49 GWAS–identified SNPs associated with one or more lipid traits in at least two PAGE studies and across six racial/ethnic groups. We performed a meta-analysis testing for SNP associations with fasting HDL-C, LDL-C, and ln(TG) levels in self-identified European American (∼20,000), African American (∼9,000), American Indian (∼6,000), Mexican American/Hispanic (∼2,500), Japanese/East Asian (∼690), and Pacific Islander/Native Hawaiian (∼175) adults, regardless of lipid-lowering medication use. We replicated 55 of 60 (92%) SNP associations tested in European Americans at p<0.05. Despite sufficient power, we were unable to replicate ABCA1 rs4149268 and rs1883025, CETP rs1864163, and TTC39B rs471364 previously associated with HDL-C and MAFB rs6102059 previously associated with LDL-C. Based on significance (p<0.05) and consistent direction of effect, a majority of replicated genotype-phentoype associations for HDL-C, LDL-C, and ln(TG) in European Americans generalized to African Americans (48%, 61%, and 57%), American Indians (45%, 64%, and 77%), and Mexican Americans/Hispanics (57%, 56%, and 86%). Overall, 16 associations generalized across all three populations. For the associations that did not generalize, differences in effect sizes, allele frequencies, and linkage disequilibrium offer clues to the next generation of association studies for these traits.


PLOS Genetics | 2013

Phenome-Wide Association Study (PheWAS) for Detection of Pleiotropy within the Population Architecture using Genomics and Epidemiology (PAGE) Network

Sarah A. Pendergrass; Kristin Brown-Gentry; Scott M. Dudek; Alex T. Frase; Eric S. Torstenson; Robert Goodloe; José Luis Ambite; Christy L. Avery; Steve Buyske; Petra Bůžková; Ewa Deelman; Megan D. Fesinmeyer; Christopher A. Haiman; Gerardo Heiss; Lucia A. Hindorff; Chu Nan Hsu; Rebecca D. Jackson; Charles Kooperberg; Loic Le Marchand; Yi Lin; Tara C. Matise; Kristine R. Monroe; Larry W. Moreland; Sungshim Lani Park; Alex P. Reiner; Robert B. Wallace; Lynn R. Wilkens; Dana C. Crawford; Marylyn D. Ritchie

Using a phenome-wide association study (PheWAS) approach, we comprehensively tested genetic variants for association with phenotypes available for 70,061 study participants in the Population Architecture using Genomics and Epidemiology (PAGE) network. Our aim was to better characterize the genetic architecture of complex traits and identify novel pleiotropic relationships. This PheWAS drew on five population-based studies representing four major racial/ethnic groups (European Americans (EA), African Americans (AA), Hispanics/Mexican-Americans, and Asian/Pacific Islanders) in PAGE, each site with measurements for multiple traits, associated laboratory measures, and intermediate biomarkers. A total of 83 single nucleotide polymorphisms (SNPs) identified by genome-wide association studies (GWAS) were genotyped across two or more PAGE study sites. Comprehensive tests of association, stratified by race/ethnicity, were performed, encompassing 4,706 phenotypes mapped to 105 phenotype-classes, and association results were compared across study sites. A total of 111 PheWAS results had significant associations for two or more PAGE study sites with consistent direction of effect with a significance threshold of p<0.01 for the same racial/ethnic group, SNP, and phenotype-class. Among results identified for SNPs previously associated with phenotypes such as lipid traits, type 2 diabetes, and body mass index, 52 replicated previously published genotype–phenotype associations, 26 represented phenotypes closely related to previously known genotype–phenotype associations, and 33 represented potentially novel genotype–phenotype associations with pleiotropic effects. The majority of the potentially novel results were for single PheWAS phenotype-classes, for example, for CDKN2A/B rs1333049 (previously associated with type 2 diabetes in EA) a PheWAS association was identified for hemoglobin levels in AA. Of note, however, GALNT2 rs2144300 (previously associated with high-density lipoprotein cholesterol levels in EA) had multiple potentially novel PheWAS associations, with hypertension related phenotypes in AA and with serum calcium levels and coronary artery disease phenotypes in EA. PheWAS identifies associations for hypothesis generation and exploration of the genetic architecture of complex traits.


Genetic Epidemiology | 2011

The Use of Phenome-Wide Association Studies (PheWAS) for Exploration of Novel Genotype-Phenotype Relationships and Pleiotropy Discovery

Sarah A. Pendergrass; Kristin Brown-Gentry; Scott M. Dudek; Eric S. Torstenson; José Luis Ambite; Christy L. Avery; Steven Buyske; C. Cai; Megan D. Fesinmeyer; Christopher A. Haiman; Gerardo Heiss; Lucia A. Hindorff; Chun-Nan Hsu; Rebecca D. Jackson; Charles Kooperberg; Loic Le Marchand; Yi Lin; Tara C. Matise; Larry W. Moreland; Kristine R. Monroe; Alex P. Reiner; Robert B. Wallace; Lynne R. Wilkens; Dana C. Crawford; Marylyn D. Ritchie

The field of phenomics has been investigating network structure among large arrays of phenotypes, and genome‐wide association studies (GWAS) have been used to investigate the relationship between genetic variation and single diseases/outcomes. A novel approach has emerged combining both the exploration of phenotypic structure and genotypic variation, known as the phenome‐wide association study (PheWAS). The Population Architecture using Genomics and Epidemiology (PAGE) network is a National Human Genome Research Institute (NHGRI)‐supported collaboration of four groups accessing eight extensively characterized epidemiologic studies. The primary focus of PAGE is deep characterization of well‐replicated GWAS variants and their relationships to various phenotypes and traits in diverse epidemiologic studies that include European Americans, African Americans, Mexican Americans/Hispanics, Asians/Pacific Islanders, and Native Americans. The rich phenotypic resources of PAGE studies provide a unique opportunity for PheWAS as each genotyped variant can be tested for an association with the wide array of phenotypic measurements available within the studies of PAGE, including prevalent and incident status for multiple common clinical conditions and risk factors, as well as clinical parameters and intermediate biomarkers. The results of PheWAS can be used to discover novel relationships between SNPs, phenotypes, and networks of interrelated phenotypes; identify pleiotropy; provide novel mechanistic insights; and foster hypothesis generation. The PAGE network has developed infrastructure to support and perform PheWAS in a high‐throughput manner. As implementing the PheWAS approach has presented several challenges, the infrastructure and methodology, as well as insights gained in this project, are presented herein to benefit the larger scientific community. Genet. Epidemiol. 2011.


Genetics in Medicine | 2010

Assessing the accuracy of observer-reported ancestry in a biorepository linked to electronic medical records

Logan Dumitrescu; Marylyn D. Ritchie; Kristin Brown-Gentry; Jill M. Pulley; Melissa A. Basford; Joshua C. Denny; Jorge R. Oksenberg; Dan M. Roden; Jonathan L. Haines; Dana C. Crawford

Purpose: The Vanderbilt DNA Databank (BioVU) is a biorepository that currently contains >80,000 DNA samples linked to electronic medical records. Although BioVU is a valuable source of samples and phenotypes for genetic association studies, it is unclear whether the administratively assigned race/ethnicity in BioVU can accurately describe and be used as a proxy for genetic ancestry.Methods: We genotyped 360 single nucleotide polymorphisms on the Illumina DNA Test Panel containing ancestry informative markers in 1910 BioVU samples with observer-reported ancestry and 384 samples from the Multiple Sclerosis Genetics Group with self-reported ancestry. Genetic ancestry was inferred for all individuals using Structure 2.2.Results: More than 98% of observer-reported European Americans were genetically inferred to have at least 60% European ancestry. Ninety-three percent of observer-reported African Americans were genetically inferred to be predominantly of African ancestry. We determined that the concordance of observer-reported race/ethnicity and inferred genetic ancestry was not significantly different from that of self-reported race/ethnicity in either population (P = 0.09 and 0.94 in European Americans and African Americans, respectively).Conclusions: Observer-reported race/ethnicity for European Americans and African Americans approximates genetic ancestry as well as self-reported race/ethnicity, making biorepositories linked to electronic medical records such as BioVU a viable source of DNA samples for future large-scale genetic association studies.


Human Reproduction | 2013

Replication of genetic loci for ages at menarche and menopause in the multi-ethnic Population Architecture using Genomics and Epidemiology (PAGE) study

Cara L. Carty; Kylee L. Spencer; Veronica Wendy Setiawan; Lindsay Fernández-Rhodes; Jennifer Malinowski; Steven Buyske; Alicia Young; Neal W. Jorgensen; I. Cheng; Christopher S. Carlson; Kristin Brown-Gentry; Robert Goodloe; Amy J. Park; Nisha I. Parikh; Brian E. Henderson; Loic Le Marchand; Jean Wactawski-Wende; Myriam Fornage; Tara C. Matise; Lucia A. Hindorff; A.M. Arnold; Christopher A. Haiman; Nora Franceschini; Ulrike Peters; Dana C. Crawford

STUDY QUESTION Do genetic associations identified in genome-wide association studies (GWAS) of age at menarche (AM) and age at natural menopause (ANM) replicate in women of diverse race/ancestry from the Population Architecture using Genomics and Epidemiology (PAGE) Study? SUMMARY ANSWER We replicated GWAS reproductive trait single nucleotide polymorphisms (SNPs) in our European descent population and found that many SNPs were also associated with AM and ANM in populations of diverse ancestry. WHAT IS KNOWN ALREADY Menarche and menopause mark the reproductive lifespan in women and are important risk factors for chronic diseases including obesity, cardiovascular disease and cancer. Both events are believed to be influenced by environmental and genetic factors, and vary in populations differing by genetic ancestry and geography. Most genetic variants associated with these traits have been identified in GWAS of European-descent populations. STUDY DESIGN, SIZE, DURATION A total of 42 251 women of diverse ancestry from PAGE were included in cross-sectional analyses of AM and ANM. MATERIALS, SETTING, METHODS SNPs previously associated with ANM (n = 5 SNPs) and AM (n = 3 SNPs) in GWAS were genotyped in American Indians, African Americans, Asians, European Americans, Hispanics and Native Hawaiians. To test SNP associations with ANM or AM, we used linear regression models stratified by race/ethnicity and PAGE sub-study. Results were then combined in race-specific fixed effect meta-analyses for each outcome. For replication and generalization analyses, significance was defined at P < 0.01 for ANM analyses and P < 0.017 for AM analyses. MAIN RESULTS AND THE ROLE OF CHANCE We replicated findings for AM SNPs in the LIN28B locus and an intergenic region on 9q31 in European Americans. The LIN28B SNPs (rs314277 and rs314280) were also significantly associated with AM in Asians, but not in other race/ethnicity groups. Linkage disequilibrium (LD) patterns at this locus varied widely among the ancestral groups. With the exception of an intergenic SNP at 13q34, all ANM SNPs replicated in European Americans. Three were significantly associated with ANM in other race/ethnicity populations: rs2153157 (6p24.2/SYCP2L), rs365132 (5q35/UIMC1) and rs16991615 (20p12.3/MCM8). While rs1172822 (19q13/BRSK1) was not significant in the populations of non-European descent, effect sizes showed similar trends. LIMITATIONS, REASONS FOR CAUTION Lack of association for the GWAS SNPs in the non-European American groups may be due to differences in locus LD patterns between these groups and the European-descent populations included in the GWAS discovery studies; and in some cases, lower power may also contribute to non-significant findings. WIDER IMPLICATIONS OF THE FINDINGS The discovery of genetic variants associated with the reproductive traits provides an important opportunity to elucidate the biological mechanisms involved with normal variation and disorders of menarche and menopause. In this study we replicated most, but not all reported SNPs in European descent populations and examined the epidemiologic architecture of these early reported variants, describing their generalizability and effect size across differing ancestral populations. Such data will be increasingly important for prioritizing GWAS SNPs for follow-up in fine-mapping and resequencing studies, as well as in translational research.


American Journal of Epidemiology | 2013

Association of Functional Polymorphism rs2231142 (Q141K) in the ABCG2 Gene With Serum Uric Acid and Gout in 4 US Populations The PAGE Study

Lili Zhang; Kylee L. Spencer; V. Saroja Voruganti; Neal W. Jorgensen; Myriam Fornage; Lyle G. Best; Kristin Brown-Gentry; Shelley A. Cole; Dana C. Crawford; Ewa Deelman; Nora Franceschini; Angelo L. Gaffo; Kimberly Glenn; Gerardo Heiss; Nancy S. Jenny; Anna Köttgen; Qiong Li; Kiang Liu; Tara C. Matise; Kari E. North; Jason G. Umans; W.H. Linda Kao

A loss-of-function mutation (Q141K, rs2231142) in the ATP-binding cassette, subfamily G, member 2 gene (ABCG2) has been shown to be associated with serum uric acid levels and gout in Asians, Europeans, and European and African Americans; however, less is known about these associations in other populations. Rs2231142 was genotyped in 22,734 European Americans, 9,720 African Americans, 3,849 Mexican Americans, and 3,550 American Indians in the Population Architecture using Genomics and Epidemiology (PAGE) Study (2008-2012). Rs2231142 was significantly associated with serum uric acid levels (P = 2.37 × 10(-67), P = 3.98 × 10(-5), P = 6.97 × 10(-9), and P = 5.33 × 10(-4) in European Americans, African Americans, Mexican Americans, and American Indians, respectively) and gout (P = 2.83 × 10(-10), P = 0.01, and P = 0.01 in European Americans, African Americans, and Mexican Americans, respectively). Overall, the T allele was associated with a 0.24-mg/dL increase in serum uric acid level (P = 1.37 × 10(-80)) and a 1.75-fold increase in the odds of gout (P = 1.09 × 10(-12)). The association between rs2231142 and serum uric acid was significantly stronger in men, postmenopausal women, and hormone therapy users compared with their counterparts. The association with gout was also significantly stronger in men than in women. These results highlight a possible role of sex hormones in the regulation of ABCG2 urate transporter and its potential implications for the prevention, diagnosis, and treatment of hyperuricemia and gout.


PLOS Genetics | 2014

Detection of Pleiotropy through a Phenome-Wide Association Study (PheWAS) of Epidemiologic Data as Part of the Environmental Architecture for Genes Linked to Environment (EAGLE) Study

Molly A. Hall; Anurag Verma; Kristin Brown-Gentry; Robert Goodloe; Jonathan Boston; Sarah Wilson; Bob McClellan; Cara Sutcliffe; Holly H. Dilks; Nila B. Gillani; Hailing Jin; Ping Mayo; Melissa Allen; Nathalie Schnetz-Boutaud; Dana C. Crawford; Marylyn D. Ritchie; Sarah A. Pendergrass

We performed a Phenome-wide association study (PheWAS) utilizing diverse genotypic and phenotypic data existing across multiple populations in the National Health and Nutrition Examination Surveys (NHANES), conducted by the Centers for Disease Control and Prevention (CDC), and accessed by the Epidemiological Architecture for Genes Linked to Environment (EAGLE) study. We calculated comprehensive tests of association in Genetic NHANES using 80 SNPs and 1,008 phenotypes (grouped into 184 phenotype classes), stratified by race-ethnicity. Genetic NHANES includes three surveys (NHANES III, 1999–2000, and 2001–2002) and three race-ethnicities: non-Hispanic whites (n = 6,634), non-Hispanic blacks (n = 3,458), and Mexican Americans (n = 3,950). We identified 69 PheWAS associations replicating across surveys for the same SNP, phenotype-class, direction of effect, and race-ethnicity at p<0.01, allele frequency >0.01, and sample size >200. Of these 69 PheWAS associations, 39 replicated previously reported SNP-phenotype associations, 9 were related to previously reported associations, and 21 were novel associations. Fourteen results had the same direction of effect across more than one race-ethnicity: one result was novel, 11 replicated previously reported associations, and two were related to previously reported results. Thirteen SNPs showed evidence of pleiotropy. We further explored results with gene-based biological networks, contrasting the direction of effect for pleiotropic associations across phenotypes. One PheWAS result was ABCG2 missense SNP rs2231142, associated with uric acid levels in both non-Hispanic whites and Mexican Americans, protoporphyrin levels in non-Hispanic whites and Mexican Americans, and blood pressure levels in Mexican Americans. Another example was SNP rs1800588 near LIPC, significantly associated with the novel phenotypes of folate levels (Mexican Americans), vitamin E levels (non-Hispanic whites) and triglyceride levels (non-Hispanic whites), and replication for cholesterol levels. The results of this PheWAS show the utility of this approach for exposing more of the complex genetic architecture underlying multiple traits, through generating novel hypotheses for future research.


Circulation-cardiovascular Genetics | 2011

SCN5A Variation Is Associated With Electrocardiographic Traits in the Jackson Heart Study

Janina M. Jeff; Kristin Brown-Gentry; Sarah G. Buxbaum; Daniel F. Sarpong; Herman A. Taylor; Alfred L. George; Dan M. Roden; Dana C. Crawford

Background—Understanding variation in the normal electric activity of the heart, assessed by the ECG, may provide a starting point for studies of susceptibility to serious arrhythmias such as sudden cardiac death during myocardial infarction or drug therapy. Recent genetic association studies of one ECG trait, the QT interval, have identified common variation in European-descent populations, but little is known about the genetic determinants of ECG traits in populations of African descent. Methods and Results—To identify genetic risk factors, we have undertaken a candidate gene study of ECG traits in collaboration with the Jackson Heart Study, a longitudinal study of 5301 blacks ascertained from the Jackson, Mississippi, area. Nine quantitative ECG traits were evaluated: P, PR, QRS, QT, and QTc durations, heart rate, and P, QRS, and T axes. We genotyped 72 variations in the predominant sodium channel gene expressed in heart, SCN5A, encoding the Nav1.5 voltage-gated sodium channel in 4558 subjects. Both rare and common variants in this gene have previously been associated with inherited arrhythmia syndromes and variable conduction. Adjusting for age, sex, and European ancestry, we performed tests of association in 3054 unrelated participants and identified 14 significant associations (P<1.0×10−4), of which 13 are independent, based on linkage disequilibrium. These variants explain up to 2% of the variation in ECG traits in the Jackson Heart Study. Conclusions—These results suggest that SCN5A variation contributes to ECG trait distributions in blacks, and these same variations may be risk or protective factors associated with susceptibility to arrhythmias.

Collaboration


Dive into the Kristin Brown-Gentry's collaboration.

Top Co-Authors

Avatar

Dana C. Crawford

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marylyn D. Ritchie

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Nora Franceschini

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Jonathan L. Haines

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shelley A. Cole

Texas Biomedical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Dan M. Roden

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Kari E. North

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Myriam Fornage

University of Texas Health Science Center at Houston

View shared research outputs
Researchain Logo
Decentralizing Knowledge